DFT techniques for interpretation and solution of practical problems

Prof. Jose A Alarco¹ and Prof. Ian D.R. Mackinnon²

¹School of Chemistry and Physics,²School of Earth and Atmospheric Sciences Science Faculty, Queensland University of Technology Brisbane, Australia

> Meeting of Physics Webinar Lima – Perú August 12-14, 2021

QUI

Acknowledgement of Traditional Owners

QUT acknowledges the Turrbal and Yugara, as the First Nations owners of the lands where QUT now stands. We pay respect to their Elders, lores, customs and creation spirits. We recognise that these lands have always been places of teaching, research and learning.
QUT acknowledges the important role Aboriginal and Torres Strait Islander people play within the QUT community.

Outline

- Motivation
- Brief explanation of Density Functional Theory (DFT)
- Example of DFT use for practical outcomes in battery science and technology
- Example of DFT use for improved understanding of superconductor materials symmetry and insight on mechanisms
- Collaboration opportunities
- Conclusions.

Motivation

Earlier Definition of Materials Science

Microstructure grain size, shape, texture...

www.google.com

QUT

More Recent and Inclusive Definition of Materials Science

www.google.com

Computational Modeling

QUT

Brief explanation of Density Functional Theory (DFT)

Computational Quantum Chemistry/Physics

Atomistic Modeling

Simulation

Visualization

Prediction!

Density Functional Theory

QUT

Many Body Schrodinger's equation

More than one electron $\hat{H}\Psi(\mathbf{r}_1, \mathbf{r}_2, ..., \mathbf{r}_N) = E\Psi(\mathbf{r}_1, \mathbf{r}_2, ..., \mathbf{r}_N)$

$$\hat{H} = -\frac{1}{2} \sum_{i}^{N} \nabla_{i}^{2} + \hat{V}_{ext} + \sum_{i < j}^{N} \frac{1}{|\mathbf{r}_{i} - \mathbf{r}_{j}|}$$

$$\hat{V}_{ext} = -\sum_{\alpha}^{N_{at}} \frac{Z_{\alpha}}{|\mathbf{r}_i - \mathbf{R}_{\alpha}|}$$

Time independent, non-relativistic Schrodinger equation Born-Oppenheimer approximation

Kinetic energy, interaction with external potential and electron-electron interaction

Electron-atomic nuclei interaction (of interest in materials simulation)

An Introduction to Density Functional Theory, N.M. Harrison

Many Body Schrodinger's equation

More than one electron

$$\Psi_{HF} = \frac{1}{\sqrt{N!}} \det \left[\phi_1 \phi_2 \phi_3 \dots \phi_N \right] \quad \text{Hartree-Fock ansatz}$$

Hartree-Fock energy

$$E_{HF} = \int \phi_i^*(\mathbf{r}) \left(-\frac{1}{2} \sum_{i}^N \nabla_i^2 + V_{ext} \right) \phi_i(\mathbf{r}) d\mathbf{r} + \frac{1}{2} \sum_{i,j}^N \int \frac{\phi_i^*(\mathbf{r}_1) \phi_i(\mathbf{r}_1) \phi_j^*(\mathbf{r}_2) \phi_j(\mathbf{r}_2)}{|\mathbf{r}_i - \mathbf{r}_j|} d\mathbf{r}_1 d\mathbf{r}_2 \qquad \text{Coulomb energy} - \frac{1}{2} \sum_{i,j}^N \int \frac{\phi_i^*(\mathbf{r}_1) \phi_j(\mathbf{r}_1) \phi_i(\mathbf{r}_2) \phi_j^*(\mathbf{r}_2)}{|\mathbf{r}_i - \mathbf{r}_j|} d\mathbf{r}_1 d\mathbf{r}_2 \qquad \text{Exchange energy}$$

Introduction to DFT

 $n(\mathbf{r}) \Longrightarrow \Psi(\mathbf{r}_1,\ldots,\mathbf{r}_N) \Longrightarrow \nu(\mathbf{r}),$

Function y=f(x), from a number x we go to a number y=f(x)Simple example of functional N[n], from the function n(**r**) we go to a number N

 $N = \int d^3 r n(\mathbf{r}) = N[n],$

Another example where the functional depends on a parameter

$$v_H[n](\mathbf{r}) = q^2 \int d^3 r' \frac{n(\mathbf{r}')}{|\mathbf{r} - \mathbf{r}'|},$$
 Hartree potentia

Introduction to DFT Hohenberg-Kohn Theorem $n(\mathbf{r}) = N \int d^3r_2 \int d^3r_3 \dots \int d^3r_N \Psi^*(\mathbf{r}, \mathbf{r}_2 \dots, \mathbf{r}_N) \Psi(\mathbf{r}, \mathbf{r}_2 \dots, \mathbf{r}_N).$ Given the ground state density $n_0(\mathbf{r})$, it is possible to calculate $\Psi_0(\mathbf{r})$ $\Psi_0(\mathbf{r}_1,\mathbf{r}_2\ldots,\mathbf{r}_N)=\Psi[n_0(\mathbf{r})].$ $\Psi_0[n_0]$ is a functional $O_0 = O[n_0] = \langle \Psi[n_0] | \hat{O} | \Psi[n_0] \rangle.$ Average total energy $E[\Psi] = \int \Psi^* \hat{H} \Psi d\mathbf{r} = \left\langle \Psi | \hat{H} | \Psi \right\rangle$ for specified state **Energy is a functional** $E[\Psi] \ge E_0$ Variational theorem Minimized by n_0 Ground state

Introduction to DFT

Kohn-Sham equations:

$$\left(-\frac{1}{2}\nabla^2 + \upsilon^{C}(\mathbf{r})\right)\psi_i(\mathbf{r}) + \int \upsilon^{xc}(\mathbf{r},\mathbf{r}')\psi_i(\mathbf{r}')\,d\mathbf{r}' = \epsilon_i\psi_i(\mathbf{r})$$

$$\upsilon^{\mathsf{C}}(\mathbf{r}) = -\sum_{a} \frac{Z_{a}}{|\mathbf{R}_{a} - \mathbf{r}|} + \int \frac{\rho(\mathbf{r}, \mathbf{r})}{|\mathbf{r} - \mathbf{r}'|} d\mathbf{r}'$$

Coulomb potential

Electron

 $\rho(\mathbf{r}, \mathbf{r}') = \sum_{\alpha} \psi_{\alpha}^{*}(\mathbf{r}) \psi_{\alpha}(\mathbf{r}') \qquad \text{density} \\ matrix \\ \mathcal{V}^{xc}(\mathbf{r}, \mathbf{r}') \qquad \text{Exchange correlation potential -} \\ \text{Hides complexity of many body}$ interaction

Introduction to DFT- Pseudopotentials

Origin of Electronic Bands

Origin of Electronic Bands

6

Figure 6.2 Band formation in Si. The lower band corresponds to the sp3 states and is completely filled.

Example of DFT use for practical outcomes in battery science and technology

Olivine phosphates

 $LiFe^{(II)}PO_4 \iff Fe^{(III)}PO_4$

Transport mechanism of LTMP

- Electronic structure
 - Large band gap
 - Localized valence band

maximum

- Small polaron hopping
 - Thermally activated
 - Activation energy (E_a) for LiFePO₄: 156 meV – 630 meV
 - Hopping rate is related to the concentration of small polaron and Li vacancy (Hoang et al., 2011)
 - E_a= ¼ optical electron transfer energy

QUT

(Furutsuki et al., 2012)

Optical absorbance and Tauc plots

Y. Zhang et al., RSC Adv. 9 (2019) pp 1134-1146.

QU

X-ray photoemission (XPS)

<u>Samples:</u>

LFP-S: Solution based method, Li:Fe:P=1:1:1

FP-S: Chemically delithiated with H₂O₂

SEM micrographs and XRD patterns for the LFP samples.

High resolution Fe-2p XPS spectra.

QUT

Y. Zhang et al., RSC Adv. 9 (2019) pp 1134-1146.

EELS in the TEM for LFeP

Y. Zhang et al., RSC Adv. 9 (2019) pp 1134-1146.

QUT

UV photoemission (UPS)

Y. Zhang et al., RSC Adv. 9 (2019) pp 1134-1146.

Comparison of DFT functionals

Y. Zhang et al., RSC Adv. 9 (2019) pp 1134-1146.

QUT

Soft X-ray Absorption Spectroscopy (Australian Synchrotron)

CRICOS No.00213J

Soft X-ray Absorption Spectroscopy

- PEY Partial Electron Yield
- TEY Total Electron Yield
- TFY Total Fluorescence Yield

O K-edge and Fe L-edge of LFeP vs Li

O K-edge and Fe L-edge spectra for chemically delithiated LiFePO₄ samples (TEY).

Y. Zhang et al., ACS Appl. Energy Mat. 3(3) (2019) 2856-2866.

LiMPO₄ O-K edges

CRICOS No.00213J

Y. Zhang et al., ACS Appl. Energy Mat. 3(3) (2019) 2856-2866.

Preferential doping at the surface layer of LFeP

QUT

XRD patterns for the pristine and doped LiFePO₄ samples.

Preferential doping at the surface layer of LiFePO₄

O K-edge spectra for the pristine and doped LiFePO₄ samples with (a) PEY, (b) TEY and (c) TFY modes.

CRICOS No.00213J

Y. Zhang et al., ACS Appl. Energy Mat. (2020). https://doi.org/10.1021/acsaem.0c01536

Preferential doping at the surface layer of LFeP

CRICOS No.00213J

QUT

Transmission Electron Microscopy

Junction effects

Before Contact

WF (Less dense graphitic C) = 3.5 - 6 eV [ref Neuville]

Zhang et al., (2021) J. Phys. Energy 3

Figure 6-5 Energy level diagrams for an ohmic contact between a metal and an extrinsic semiconductor: (a) n-type, (b) p-type.

It is usually difficult to find a suitable metal with $\phi_m < \phi_s$ for the ohmic contact to n-type semiconductors, or with $\phi_m > \phi_s$ for the ohmic contact to p-type semiconductors. Furthermore, most semiconductors for electronic devices are covalently bonded, so they have surface states. For these reasons, it is not possible to produce an ohmic contact simply based on method 1. Even though it may be possible for other semiconductors, it is still not practical, because the behavior of such ohmic contacts is not reproducible.

The method for obtaining good, reliable ohmic contacts for most semiconductor devices

is based on method 2, that is, producing a very thin layer heavily doped with dopants by either diffusion or ion implantation techniques in order to make this layer become degenerate. Such a layer is called the n^+ layer for n-type semiconductors and the p^+ layer for p-type semiconductors. After this layer has been produced, any metal or alloy can be deposited on the surface of this layer to form a good ohmic contact.

Let us take the ohmic contact for n-type semiconductors as an example. The n^+ layer provides a narrow barrier width for electrons to tunnel quantum-mechanically from the metal

CF

jose.alarco@qut.edu.au

Accelerated cycle test (at 1C for discharge)

CRICOS No.00213J

jose.alarco@qut.edu.au

Example of DFT use for improved understanding of superconductor materials symmetry and insight on mechanisms

Metal borides synthesis in small Parr reactor MgB₂ – SEM/Raman

SEM of MgB₂ samples Raman A 30000 ----- Sample A 25000 ----- Sample B **Intensity** (arb. units) 120000 120000 10000 2 µm 5000 2500 2000 1500 1000 500 3000 Wavenumber/cm⁻¹

Mackinnon, I.D.R. et al., *Materials*, (2014), 7, 3901-3918.

Alarco et al., Phys. Chem. Chem. Phys., 16, 24443-24456, 2014

0

MgB₂ - Properties

MgB₂ - Raman

Alarco et al., Phys. Chem. Chem. Phys., 16, 24443-24456, 2014

MgB₂ – Group Analysis

		Group														
	Frequency		P6		P-6		P6/m		P622		P6mm		P-6m2		P6/mmm	
	(cm ⁻¹)	168		174		175		177		183		187		191		
		IR	R	IR	R	IR	R	IR	R	IR	R	IR	R	IR	R	
	342.8-344.3	Y	Y	Y	Y	Y	N	Y	Y	Y	Y	Y	Y	Y	N	
	342.8-344.3	Y	Y	Y	Y	Y	N	Y	Y	Y	Y	Y	Y	Y	N	
	413.3-416.9	Y	Y	Y	N	Y	N	Y	N	Y	Y	Y	N	Y	N	
E modos	425.9-644.7*	N	Y	Y	Y	N	Y	N	Y	N	Y	Y	Y	N	Y	
⊏ _{2g} modes	425.9-644.7*	N	Y	Y	Y	N	Y	N	Y	N	Y	Y	Y	N	Y	
	711.6-716.9	N	N	Y	N	N	N	N	N	N	N	Y	N	N	N	

Alarco et al., Phys. Chem. Chem. Phys., 16, 24443-24456, 2014

MgB₂ - Super-lattice modes

Frozen phonon technique results in similar symmetry reductions

	Group									
Frequency	P3	c1	P- 3	Bc1	P63	mc	P-6c2			
(cm ⁻¹)	15	58	16	65	186		188			
	IR	R	IR	R	IR	R	IR	R		
233.4	Y	Y	Y	N	N	Y	N	Y		
233.4	Y	Y	Y	N	N	Y	Ν	Y		
237.4	Y	Y	Ν	Y	N	Y	Y	Y		
237.4	Y	Y	Ν	Y	N	Y	Y	Y		
336.4	N	N	Ν	N	N	Ν	N	N		
343.0	Y	Y	Y	N	Y	Y	Y	Y		
343.0	Y	Y	Y	N	Y	Y	Y	Y		
395.4	N	Ν	Ν	N	N	Ν	Ν	Ν		
415.9	Y	Y	Y	N	Y	Y	Y	N		
534.9	Y	Y	Y	N	Y	Y	Y	Y		
534.9	Y	Y	Y	N	Y	Y	Y	Y		
426.1-580.8*	Y	Y	Ν	Y	N	Y	Y	Y		
426.1-580.8*	Y	Y	Ν	Y	N	Y	Y	Y		
657.0	N	Ν	Ν	N	Y	Y	N	N		
712.4	Y	Y	Ν	Y	N	Ν	Y	N		

Alarco *et al.*, Phys. Chem. Chem. Phys., **16**, 24443-24456, 2014

Motivation

Signatures of superconductivity

Density Functional Theory (DFT)

Identify key features in: Electronic Band Structure Fermi surface Phonon dispersion

Complementary to Eliashberg Equations (uses normal state parameters)

Maintain ab-initio approach Reciprocal geometrical information

Transform back to real space geometry

MgB₂ – choice for benchmarking

Good

Simple structure with few atoms – good for computation Extensively investigated experimentally and theoretically – good for validation Multiple effects that influence the superconducting transition temperature (Tc) Isotope effects Metal substitutions Pressure effects Parent structure hosts superconductors with different elements and Tc's

Bad ?? Out of fashion for publications

Modelling and Simulation

stability

tr_

- High computational demand for low values of x
- Ab initio models without post-computational corrections

Alarco *et al.*, Phys. Chem. Chem. Phys., **16**, 24443-24456, 2014 Alarco *et al.*, Phys. Chem. Chem. Phys., **16**, 25386-25392, 2014 Alarco *et al.*, Phys. Chem. Chem. Phys., **17**, 25090-25099, 2015

Substitution in AlB₂-type Structures $Mg_{1-x}M_xB_2$

Solubility of most metals in MgB₂ is low

Metal	Max Value (x)	T _c at max x (K)
Li	0.12	~35 ¹
AI	0.90	02
Fe	0.04	~35 ¹
Ti	0.40	~25 ³
Mn	0.05	0 ¹
Sc	0.28	~64

 $Mg(B_{1-x}C_x)_2 x < 0.20; T_c at max x: 0$

In all cases, T_c is suppressed

1. Karpinski et al., Phys. Rev. B., 2008

2. Lee et al., Physica C, 2007

3. Lee et al., J. Mag. Magnetic Mater., 2008

4. Agrestini et al., J Phys. Chem. Solids, 2004

Substituted Metal Borides

<u>Superlattices</u>

 $Mg_{0.75}AI_{0.25}B_2 = Mg_3AIB_8$

 $Mg_{0.5}AI_{0.5}B_2 = MgAIB_4$

 $Mg_{0.33}AI_{0.66}B_2 = MgAI_2B_6$

Observed by HREM Xiang *et al.*, Phys. Rev. B, 2002 Zandbergen *et al.*, Physica C, 2002 Li *et al.*, Phys. Rev. B, 2002

Alarco *et al.*, Phys. Chem. Chem. Phys., **16**, 24443-24456, 2014 Alarco *et al.*, Phys. Chem. Chem. Phys., **16**, 25386-25392, 2014 Alarco *et al.*, Phys. Chem. Chem. Phys., **17**, 25090-25099, 2015

Kohn Anomaly Centred around **G** or **Γ** Along **G-K** and **G-M** directions

800

600

400

200

Ω

-0.4

-0.2

LDA: $k = 0.02 A^{-1}$

Frequency (cm⁻¹)

Experimental IXS along G-M (Baron *et al.,* **Phys. Rev. Lett**., 92, 2004.) for MgB₂

Density Functional Theory

Phonon Dispersions – $Mg_{1-x}AI_xB_2$

QUT

Superconducting T_c – Mg_{1-x}Al_xB₂ Theory and Experiment

 $\delta = (nN/Z)x(k_BT_{\delta}/2)$

$$\delta = (nN/Z)x(k_BT_{\delta}/2)$$

$$\begin{split} \delta &= \text{height of phonon anomaly (cm}^{-1}) \\ n &= \text{degrees of freedom per atom} \\ N &= \text{number of atoms per unit cell} \\ Z &= \text{number of formula units per cell} \\ k_B &= \text{Boltzman's constant} \\ T_\delta &= \text{thermal energy of phonon} \end{split}$$

QUT

Solve for T_{δ}

*Experimental values are onset temperatures

MgB₂ - Pressure dependence of T_c

QUT

Superconducting T_c – AIB₂-type Structures Theory and Experiment

Compound	Predicted T _c This work (K)	Experimental T _c By Others (K)			
MgB ₂	42.0 (3.0)	39.2 - 40.2			
$(Mg_{0.8}AI_{0.2})B_2$	31.3 (3.4)	25 (2) – 33.0 (0.1)			
(Mg _{0.66} Al _{0.34})B ₂	16.2 (3.3)	13.5 (0.1)			
$(Mg_{0.5}AI_{0.5})B_2$	4.6 (2.5)	4.0 - 13.5			
(Mg _{0.86} Sc _{0.14})B ₂	31.5 (4.4)	23.0 (2.5)**			
$(Mg_{0.75}Sc_{0.25})B_{2}$	11.4 (1.0)	~8.2 (5.0)**			
AIB ₂	0.0	0.0			
BaSi ₂	9.3 (0.5)	8.9			
$Ca(Al_{0.5}Si_{0.5})_2$	7.5 (0.5)	7.8			

Can we use this approach to design/predict new superconducting materials ?

**peak values from derivative of surface resistance

Superconducting T_c – AIB₂-type Structures Theory and Experiment

Compound	Predicted T _c This work (K)	Experimental T _c By Others (K)		
MgB ₂	42.0 (3.0)	39.2 - 40.2		
$(Mg_{0.8}AI_{0.2})B_2$	31.3 (3.4)	25 (2) – 33.0 (0.1)		
$(Mg_{0.67}AI_{0.33})B_{2}$	16.2 (3.3)	13.5 (0.1)		
$(Mg_{0.5}AI_{0.5})B_{2}$	4.6 (2.5)	4.0 – 13.5		
$(Mg_{0.86}Sc_{0.14})B_{2}$	31.5 (4.4)	23.0 (2.5)**		
$(Mg_{0.75}Sc_{0.25})B_{2}$	11.4 (1.0)	~8.2 (5.0)**		
AIB ₂	0.0	0.0		
BaSi ₂	9.3 (0.5)	8.9		
$Ca(Al_{0.5}Si_{0.5})_2$	7.5 (0.5)	7.8		
(Mg _{0.67} Ba _{0.33})B ₂	64.4 (2.2)	n.d.		
$(Mg_{0.5}Ba_{0.5})B_{2}$	63.6 (6.6)	n.d.		
(Mg _{0.33} Ba _{0.67})B ₂	62.1 (5.8)	n.d.		
BaB ₂ (~16GPa)	79.1 (10.2)	n.d.		

**peak values from derivative of surface resistance

New Materials: (Mg_{1-x}Ba_x)B₂ DFT Predicted T_c

Alarco et al., Phys. Chem. Chem. Phys., 17, 25090-25099, 2015

QUT

Fig. 1. Temperature dependencies of the magnetic susceptibility: (a) measured between consecutive heat treatments of MgB₂/Mg with Rb, *I*—initial sample, 2—10 hours at 180°C, *3*—13 hours at 190°C, *4*—15.5 hours at 200°C, *5*—36 hours at 200°C, *6*—56 hours at 200°C, *7*—18 hours at 300°C; (b) the initial MgB₂/Mg, the one reacted with Ba (5 min at 700°C), with Rb (17 hours at 200°C), and with Cs (20 hours at 160°C followed by 100 hours annealing at 100°C). The arrows indicate the onsets of superconducting transitions.

A. Prof. Alexei Kolmogorov alerted us on Palnichenko *et al.*, JETP Letters **86** (4), 272-274, 2007

THz/Far Infrared synchrotron absorption C-doped MgB₂

Alarco et al., submitted to Phys. Chem. Chem. Phys., Jul 2021

$$E_n(k_x, k_y, k_z) = E_0 - 2t_{\perp} \cos(ck_z) - \hbar^2 \left(k_x^2 + k_y^2\right) / 2m_n$$

$$\begin{split} m^{H}_{eff} &= 0.53 - 0.59 \;, \\ m^{L}_{eff} &= 0.20 - 0.28 \;, \\ E_{0} &= 0.58 - 0.6 \; \text{and} \\ t_{\perp} &= 0.092 - 0.094 \; \text{eV} \end{split}$$

Alarco et al., submitted to Phys. Chem. Chem. Phys., Jul 2021

Collaboration opportunities

LIST OF PUBLICATIONS

Publication in refereed journals:

 Intermetallic MP₃ (M = Ti, Zr, Hf): Elastic, electronic, optical and thermal properties
 S. K. Mitro, M. A. Rahman, F. Parvin, and A. K. M. A. Islam
 International Journal of Modern Physics B (World scientific publishing, IF: 1.219), https://doi.org/10.1142/S0217979219501893

2. Zirconium trigallide polymorphs with tetragonal and cubic structures: Optical and thermodynamic properties

M. A. Rahman, S. K. Mitro, F. Parvin, and A. K. M. A. Islam Indian Journal of Physics (Springer, IF: 1.947), <u>https://doi.org/10.1007/s12648-020-01716-4</u>

3. Comprehensive first-principles calculations on physical properties of ScV_2Ga_4 and ZrV_2Ga_4 in comparison with superconducting HfV_2Ga_4

Mirza HK Rubel, K. M. Hossain, S. K. Mitro, M. M. Rahaman, M. A. Hadi, and A. K. M. A. Islam Materials Today Communications (Elsevier, IF: 3.383), https://doi.org/10.1016/j.mtcomm.2020.100935

Newly synthesized A-site ordered cubic-perovskite superconductor (Ba_{0.54}K_{0.46})₄Bi₄O₁₂: A DFT investigation
 M. H. K. Rubel, S. K. Mitro, B. K. Mondal, M. M. Rahaman, Md Saiduzzaman, J. Hossain, A. K. M. A.

Islam, and N. Kumada

Physica C: Superconductivity and its Applications (Elsevier, IF: 1.241),

https://doi.org/10.1016/j.physc.2020.1353669

5. Influence of metalloid antimony on the physical properties of palladium-based half-Heusler compared to the metallic bismuth: A first-principle study

R. Majumder, S. K. Mitro, and B. Bairagi

Journal of Alloys and Compounds (Elsevier, IF: 5.316), https://doi.org/10.1016/j.jallcom.2020.155395

6. Insights into the physical properties and anisotropic nature of ErPdBi with an appearance of low minimum thermal conductivity

S. K. Mitro, R. Majumder, K. M. Hossain, Md Zahid Hasan, Md Emran Hossain, and M. A. Hadi Chinese Physics B (IOP publishing, IF: 1.494), <u>https://doi.org/10.1088/1674-1056/abaf9d</u>

7. Effect of the negative chemical pressure on physical properties of doped perovskite molybdates in the framework of DFT method
S. K. Mitro, K. M. Hossain, R. Majumder, and Md Zahid Hasan
Journal of Alloys and Compounds (Elsevier, IF: 5.316), <u>https://doi.org/10.1016/j.jallcom.2020.157088</u>

8. Justification of crystal stability and origin of transport properties in ternary half-Heusler ScPtBi R. Majumder, and S. K. Mitro*

RSC Advances (Royal Society of Chemistry, IF: 3.361), 10.1039/D0RA06826H

Structural, mechanical, thermal, and optical properties of inverse-Heusler alloys Cr₂CoZ (Z = Al, In): A first-principles investigation
 Md Rasheduzzaman, Khandaker Monower Hossain, S. K. Mitro, M. A. Hadi, Jibon Krishna Modak, and
 Md Zahid Hasan

QUT

Physics Letters A (Elsevier, IF: 2.654), https://doi.org/10.1016/j.physleta.2020.126967

10. Structural, mechanical, electronic, and anisotropic properties of niobium-doped strontium ferrite: firstprinciple calculations

Md Zahid Hasan, Khandaker Monower Hossain, S. K. Mitro, Md Rasheduzzaman, Jibon Krishna Modak, and M. A. Rayhan Applied Physics A (Elsevier, IF: 2.584), https://doi.org/10.1007/s00339-020-04219-5

 Influences of antimony on the structural, electronic, mechanical, and anisotropic properties of cubic Barium stannate
 Khandaker Monower Hossain, S. K. Mitro*, Md Anwar Hossain, Jibon Krishna Modak, Md asheduzzaman, and Md Zahid Hasan
 Materials Today Communications (Elsevier, IF: 3.383), <u>https://doi.org/10.1016/j.mtcomm.2020.101868</u>

 Effect of boron incorporation into the carbon-site in Nb₂SC MAX phase: Insights from DFT
 S. K. Mitro, M. A. Hadi, F. Parvin, R. Majumder, S. H. Naqib, and A. K. M. A. Islama
 Journal of Materials Research and Technology (Elsevier, IF: 5.039), https://doi.org/10.1016/j.jmrt.2021.02.031

13. Comprehensive study on the physical properties of tetragonal LaTGe3 (T = Rh, Ir, or Pd) compounds: An ab initio investigation
Md Khokon Miah, Khandaker Monower Hossain, Md Atikur Rahman, Md Rasheduzzaman, S. K. Mitro, Jibon Krishna Modak, and Md Zahid Hasan
Journal of AIP (American Institute of Physics) Advances, (AIP, IF: 1.627), https://doi.org/10.1063/5.0042924

*Corresponding author

Conclusions

Conclusions

• DFT can be an exceptional tool to advance the understanding of fundamental physical properties and for prediction of the properties of new materials.

• Examples from two areas at the frontier of R&D and practical applications have been discussed.

• The importance of calibration for accurate and realistic DFT approaches to modelling, combined with regular experimental validation, cannot be overstated.

• DFT is suited to long-distance collaboration, where there may be experimental limitations at one of the locations.

QUI
Acknowledgements

 Hamish Macintosh, Chris Williams - members of the HPC support team, e-Research Office, QUT

THANK YOU!

Electronic Band Structure of Bi-oxide based photocatalysts

Electronic Band Structure of Bi-oxide based photocatalysts

 $A_2B_2O_7$ pyrochlores

Cubic CIF, random substitution (fractional occupation) → No band gap $Bi_{1.5}M'M_{1.5}O_7$ (M'= Zn, Cd, M = Nb, Ta)

Ordered substitution, rhombohedral structure \rightarrow Band gap close match to experiment

Perenlei et al., RSC Advances, in press, 2017

Summary of calculated lattice parameters

 Table 3
 Lattice parameters calculated from BCN and BCT with different cation substitutional order, along with those for BZN and BZT structures.

Structure	DFT calculated (geometry optimized) lattice parameters					Refined lattice	
	Random	Partially ordered (A-site)	Partially ordered (B-site)	Ordered		 parameters from XRD data 	
	a (Å)	a (Å)	a (Å)	a (Å)	α (°)	a (Å)	α (°)
BCN	10.532	10.495	10.895	10.867	90.33	10.627	90.37
BCT	10.273	10.173	10.536	10.520	90.25	10.623	89.98
BZN	10.492	10.566	10.822	10.767	90.11	10.558	90.00
BZT	10.223	10.214	10.442	10.418	90.13	10.555	90.00

Enthalpies of Formation

142	Enthalpy (eV)					
Struc- ture	Random	Partially ordered (A-site)	Partially ordered (<i>B</i> -site)	Ordered		
BCN	-55605.61	-55812.94	-57363.54	-57570.16		
BCT	-55523.88	-55729.18	-57381.29	-57590.19		
BZN	-56059.83	-56278.83	-58209.31	-58427.47		
BZT	-55972.85	-56188.72	-58228.60	-58449.02		

X-ray diffraction

Transmission electron microscopy

CRICOS No.00213J

Selected area micro-diffraction

Superlattice diffraction in BCN

Raman spectrometry

BiNbO₄ Orthorhombic \rightarrow sharp peaks

All others, similar broad peaks → Raman (and IR) activity governed by group symmetry and degeneracy breaking

Effect of pseudopotential

Table 5 Comparison of DFT calculated and experimentally observed lattice constants and band gaps.

Structure -	Computational data (DFT calculated)				0.00	N 6777 J 7 307
	Norm-conserving pseudopotential		Ultrasoft pseudopotential		Experimental data	
	Lattice constant (Å)	Band gap (eV)	Lattice constant (Å)	Band gap (eV)	Lattice constant (Å)*	Band gap (eV)
BCN	10.867	1.73	10.766	2.55	10.627	2.85
BCT	10.520	3.06	10.989	2.40	10.623	3.05
BZN	10.767	1.76	10.582	2.96	10.558	2.90
BZT	10.418	3.12	10.809	2.71	10.555	3.02

Tauc plots for LTMP

Conclusions

Open circuit voltage from calculated enthalpies

• sX-LDA outperforms all other functional in EBS determination for

Estimated Li intercalation voltage with GGA, GGA+U, HSE06 and sX-LDA.

CRICOS No.002

Y. Zhang et al., JPCC (2020) https://dx.doi.org/10.1021/acs.jpcc.0c05251

Peak fitting refinement vs Geometry Optimization

LiNiPO₄ (CIF 72929)

 $X_2 - X_1$

Geometry optimised mode (no spin) Enthalpy -24760.02 eV More stable Band gap 5.464 eV Closer to exp. Reduced forces

Equilibrium positions

Localised impurity states

• Phosphate cathode materials surfaces are different from their cores.

Soft X-ray Absorption Spectroscopy (Australian Synchrotron)

Density Functional Theory

CRICOS No.00213J

jose.alarco@qut.edu.au

O K-edge and Fe L-edge vs escape depth

- Partial electron yield (PEY): surface sensitive
- Total electron yield (TEY): ~50 Å
- Total fluorescence yield (TFY): ~3000 Å

O K-edge of LTMP

O K-edge spectra of the as prepared LiMPO₄.

Y. Zhang et al., ACS Appl. Energy Mat. 3(3) (2019) 2856-2866.

Preliminary results for NMC materials

• Differentiation between surfaces and cores may be more

general than for only phosphates.

O K-edge and TM L-edge spectra for NMC.

MgB₂ – Frequency Harmonics

MgB₂ – Isotope Effect

Electron density response– MgB₂ with Frozen displaced atoms

Alarco et al., MNSMS 8, 21-46, 2018

Electron density response– MgB₂ with Frozen displaced atoms

 E_{2g} modes → 25 times stronger contribution to e-ph coupling than other modes An and Pickett, PRL **86** (19) 4366, 2001

optimized

 A_{2u} mode

Relative displacement Dx = 0.05

Frozen displaced atoms

Superconducting T_c – Mg_{1-x}Sc_xB₂ Theory and Experiment

**Agrestini et al. 2004 use peak values from derivative of surface resistance measurements

CRICOS No.00213J

MgB₂ substituted with Rb Phonon Dispersions

MgRbB4 LDA 0.017

MgRbB4 LDA k=0.012

QUT

MgB₂ substituted with Cs Phonon Dispersions

MgCsB4 LDA k=0.015 0GPa

MgCsB4 LDA k=0.015 1GPa

Asymmetric and Multiple level anomaly

QUT

Density Functional Theory

Phonon Dispersions – MgB₂

Key Factors:

- □ Optimise cell parameters
- Use dense k-grid mesh (optimise for lowest k-value)
- Avoid negative phonon frequencies
- Fractional occupancies for metal substitutions are limited
- □ Mean relative error ±5%

Alarco et al., Phys. Chem. Chem. Phys., 16, 24443-24456, 2014
K-grid optimization

	$\overline{}$		\bigcirc				
DFT Code	Δk value (Å ⁻¹)	Grid Equivalent	No. of k- points	Energy Cut-off (eV)	Fermi Energy (eV)	ΔE _v [eV]	Funct'l
CASTEP	0.100	4x4x4	8	990	8.8103	-0.097	LDA
CASTEP	0.060	6x6x6	21	990	8.2110	0.636	LDA
CASTEP	0.050	8x8x6	30	990	8.5190	0.419	LDA
CASTEP	0.040	9x9x8	48	990	8.4706	0.328	LDA
CASTEP	0.030	12x12x10	95	990	8.3773	0.383	LDA
CASTEP	0.020	19x19x14	280	990	8.3976	0.348	LDA
CASTEP	0.015	25x25x20	650	990	8.3991	0.352	LDA
CASTEP	0.008	47x47x36	3744	990	8.4038	0.343	LDA
CASTEP	0.005	75x75x58	14703	990	8.4040	0.343	LDA
CASTEP	0.005	75x75x58	14703	500	7.3295	0.371	LDA
CASTEP	0.008	47x47x36	3744	500	7.3285	0.372	LDA
CASTEP	0.020	19x19x14	280	500	7.3218	0.370	LDA
CASTEP	0.030	12x12x10	95	500	7.2449	0.475	LDA

All k-grid values are geometry optimized and converged to the same ultrafine tolerance.

K-grid optimization

All k-grid values are geometry optimized and converged to the same ultrafine tolerance!

Trendline fittings EBS

Fig.1 σ bands (heavy (y^H) - red, light (y^L) - blue and average (y^M) - gray) for the EBS of MgB₂ along the Γ Kdirection at atmospheric pressure (0 GPa), calculated with the LDA functional using k-grid $\Delta k = 0.01$ Å⁻¹: (a) for equilibrium B – atom positions and (b) for displaced B –atom positions along E_{2g} modes.

Trendline fittings EBS

Table 2. Trendline fittings along ΓK for the σ bands of MgB₂ calculated using LDA and different k-grids^{*}.

	Coefficient X ⁴			Coefficient X ² (-1)			Coefficient X ⁰			Estimated
k-grid	н	Μ	L	н	Μ	L	Н	М	L	gap energy (eV)
0.005	4.2955	11.434	18.572	8.161	11.455	14.749	0.3441	0.3354	0.3266	0.0175
0.008	8.0342	23.341	36.301	11.159	15.864	20.344	0.3441	0.3375	0.3287	0.0154
0.01	4.0135	10.91	17.807	7.96	11.166	14.371	0.3912	0.3828	0.3745	0.0167
0.022	6.8879	21.451	36.014	10.381	14.929	19.477	0.3377	0.3333	0.3289	0.0088
0.03	6.4614	24.477	42.492	10.33	15.271	20.213	0.383	0.383	0.383	0.000

*Tables present the coefficients in front of the even powers of the quartic polynomials (X^4 , X^2 and X^0). Smearing was 0.001eV for k-grids 0.005 and 0.008A⁻¹, and 0.1eV for k-grids 0.01, 0.022 and 0.03A⁻¹.

A15-superconductors Nb₃Ga Tc ~ 20.3K

 $k= 0.016 A^{-1} \rightarrow 0.012 A^{-1}$

QUT

CRICOS No.00213J

A15-superconductors Nb₃In Tc ~ 9.2K

At 0 GPa, k=0.01 A⁻¹ \rightarrow k= 0.005 A⁻¹ Soft modes

At 20 GPa, increased Tc

Better resolved reciprocal space features

At 20 GPa, k= 0.008 A⁻¹

MgB₂ – E_{2g} Phonon Modes

Superconductor Tc ~ 40K AlB₂-type structure Group symmetry P6/mmm

Alarco *et al.*, Phys. Chem. Chem. Phys., **16**, 24443-24456, 2014 Alarco *et al.*, Phys. Chem. Chem. Phys., **16**, 25386-25392, 2014 Alarco *et al.*, Phys. Chem. Chem. Phys., **17**, 25090-25099, 2015

Modelling and Simulation

stability

tr_

- High computational demand for low values of x
- Ab initio models without post-computational corrections

Alarco *et al.*, Phys. Chem. Chem. Phys., **16**, 24443-24456, 2014 Alarco *et al.*, Phys. Chem. Chem. Phys., **16**, 25386-25392, 2014 Alarco *et al.*, Phys. Chem. Chem. Phys., **17**, 25090-25099, 2015

Density Functional Theory Phonon Dispersions – MgB₂

Key Factors:

□Optimise cell parameters

Use dense k-grid mesh (optimise for lowest k-value)

Avoid negative phonon frequencies

□Fractional occupancies for metal substitutions are limited

DMean relative error $\pm 5\%$

Alarco et al., Phys. Chem. Chem. Phys., 16, 24443-24456, 2014

Substituted Metal Borides

<u>Superlattices</u>

 $\mathsf{Mg}_{0.75}\mathsf{AI}_{0.25}\mathsf{B}_2 = \mathsf{Mg}_3\mathsf{AIB}_8$

 $Mg_{0.5}AI_{0.5}B_2 = MgAIB_4$

 $Mg_{0.33}AI_{0.66}B_2 = MgAI_2B_6$

Observed by HREM Xiang *et al.*, Phys. Rev. B, 2002 Zandbergen *et al.*, Physica C, 2002 Li *et al.*, Phys. Rev. B, 2002

Alarco *et al.*, Phys. Chem. Chem. Phys., **16**, 24443-24456, 2014 Alarco *et al.*, Phys. Chem. Chem. Phys., **16**, 25386-25392, 2014 Alarco *et al.*, Phys. Chem. Chem. Phys., **17**, 25090-25099, 2015

Superconducting T_c – MgB₂ with pressure

Superconducting T_c – MgB₂ with pressure Theory and Experiment

Alarco et al., Physica C., 536, 11-17, 2017

CRICOS No.00213J

Superconducting T_c – AIB₂-type Structures Theory and Experiment

Compound	Predicted T _c This work (K)	Experimental T _c By Others (K)
MgB ₂	42.0 (3.0)	39.2 - 40.2
(Mg _{0.8} Al _{0.2})B ₂	31.3 (3.4)	25 (2) – 33.0 (0.1)
(Mg _{0.67} Al _{0.33})B ₂	16.2 (3.3)	13.5 (0.1)
$(Mg_{0.5}AI_{0.5})B_2$	4.6 (2.5)	4.0 - 13.5
(Mg _{0.86} Sc _{0.14})B ₂	31.5 (4.4)	23.0 (2.5)**
(Mg _{0.75} Sc _{0.25})B ₂	11.4 (1.0)	~8.2 (5.0)**
AIB ₂	0.0	0.0
BaSi ₂	9.3 (0.5)	8.9
$Ca(AI_{0.5}Si_{0.5})_2$	7.5 (0.5)	7.8
(Mg _{0.67} Ba _{0.33})B ₂	64.4 (2.2)	n.d.
(Mg _{0.5} Ba _{0.5})B ₂	63.6 (6.6)	n.d.
(Mg _{0.33} Ba _{0.67})B ₂	62.1 (5.8)	n.d.
BaB ₂ (~16GPa)	79.1 (10.2)	n.d.

**peak values from derivative of surface resistance

New Materials: (Mg_{1-x}Ba_x)B₂ DFT Predicted T_c

Alarco et al., Phys. Chem. Chem. Phys., 17, 25090-25099, 2015

CRICOS No.00213J

 $\delta = (nN/Z)x(k_BT_{\delta}/2)$

Alarco et al., Phys. Chem. Chem. Phys., 17, 25090-25099, 2015

Superconducting T_c – Mg_{1-x}Al_xB₂ Theory and Experiment

 $\delta = (nN/Z)x(k_BT_{\delta}/2)$

 $\delta = (nN/Z)x(k_BT_{\delta}/2)$

 δ = height of phonon anomaly (cm⁻¹)

- n = degrees of freedom per atom
- N = number of atoms per unit cell
- Z = number of formula units per cell
- k_B = Boltzman's constant
- T_{δ} = thermal energy of phonon

Solve for T_{δ}

Tc vs x for $Mg_{1-x}AI_{x}B_{2}$

CRICOS No.00213J