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INTRODUCTION

The action of the most general scalar-tensor theory in four di-
mensions, having second-order field equations, is

K (9, X) = Gs(, X)06 + G (6, X)R
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The background space-time under consideration will be

ds® = —A(r)dt” - C(r) (d6” + sen” 6dy?)  (2)

PERTURBATION FORMALISM

STABILITY ANALYSIS /> 2

We consider a background metric g,, and a perturbed metric
G = ﬁw + hy,. The 10 components of the perturbed metric
g, transform as scalar, vector or tensor. However, it can be
shown that there are actually 7 scalar (even) and 3 vector (odd)
perturbations. The 3 vector perturbations take the form
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For £ > 2, we can to use Regge-Wheeler gauge, i.e., hi™ = 0.

SECOND ORDER ACTION 7 > 2

Expanding the action (1) to second order in perturbations and
performing integration over the sphere (6, ), we find
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The second order action can be reduced to the form
S / dt dr |ag® + B¢ + v4¢°] (13)

In order to avoid a ghost, we need to impose o« > 0, which
means G > 0 and the condition to avoid Laplacian instabilities
is 5 < 0 or F > 0. Carrying out certain operations, it is possible

to obtain chi)d as
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From the variation of the action (14), we find
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Here we impose H > 0, which gives positive squared propaga-
tion speeds along the angular direction. Asumming that

Qt,r) = Z e b, (r), Im(w,) <0 (17)
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Conclusion: It is found that Horndeski black holes are linearly
stable under odd perturbations [1] if and only if: 7 > 0, G > 0,
H > 0and S(ry) >0, S(re) <0, where
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APLICATION TO GR

In this theory we have K = 0, G3 = 0, G4 = 1/2, G5 = 0,
then, F =G =H =1 > 0. Is easy to calculate that

(20)

Therefore the Schwarzschild black hole is stable, in addition,
2M ) L0+ 1)
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is the Regge-Wheeler potential.
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