QCD Trace Anomaly at the Interior of Twin Neutron Stars

José C. Jiménez

Centro Brasileiro de Pesquisas Físicas (CBPF)

Theoretical Physics in Rio Rimac XIX Facultad de Ciencias - UNI - Lima, Peru February 26–28, 2025 Introduction to Particle Physics and QCD

- 2 Introduction to Neutron Star Physics
- 3 What is the QCD perspective on Neutron Stars?
- 4 The Dense QCD Trace Anomaly in Twin Stars
- 5 Summary and Outlook

1. Current Paradigm of Particle Physics

æ

イロト 不得下 イヨト イヨト

The Standard Model of Particle Physics

Collider Experiments: LHC at CERN

< □ > < □ > < □ > < □ > < □ > < □ >

Collider Experiments: LHC at CERN

[CMS webpage, 2023]

José C. Jiménez (CBPF) QCD Trace Anomaly in Twin Neutron Stars

Brief History of Nuclear-Particle Physics

Theory			Experiment			
1918	Weyl's first gauge concept	1897	Thomson's discovery of electron e^- .			
1710	negr s hist gauge concept.	1919	Rutherford's discovery of proton p			
		1922	Confirmation that photon is elementary			
			(Compton).			
1928	Dirac's prediction of anti-particles.		(company)			
1929	Weyl's gauge theory of electromagnetism.					
	, , , , , ,	1932	Anderson discovers positron.			
			Evidence for neutron (Chadwick).			
1934	Fermi's theory of weak interactions.					
1935	Yukawa's prediction of the meson.					
		1947	Discovery of π -meson and μ -lepton.			
1954	Yang-Mills/Utiyama gauge field theory.					
1956	Lee and Yang predict non-conservation of	1956	Detection of neutrino (Reines and Cowan)			
	parity in weak interactions.		Wu et al. discover parity violation.			
1958	V-A theory of weak interactions.					
1961	Weak neutral-currents predicted (Glashow).					
1964	Higgs mechanism.					
	Quarks and strong force (Gell-Mann;					
	Zweig).					
	Coloured quarks and gluons (Greenberg; Han and Nambu).					
1967	Electroweak unification (Weinberg; Salam;					
	Glashow).					
1971	Renormalizability of gauge theories with					
	Spontaneous Symmetry Breaking					
	('t Hooft).					
1973	Quantum Chromodynamics Lagrangian	1973	Weak neutral-currents detected.			
	(Fritzsch, Gell-Mann and Leutwyler).					
		1974	Evidence of c-quark from the J/ψ			
			resonance.			
		1975	Evidence of τ -lepton.			
		1977	Evidence of b-quark from the γ resonance			
		1979	Evidence for the gluon in $e^+e^- \rightarrow 3$ jet			

- 1983 W[±], Z bosons discovered.
- 1994 Evidence for the t-quark.

QCD will make 52 years

Eur. Phys. J. C (2023) 83:1125 https://doi.org/10.1140/epjc/s10052-023-11949-2 THE EUROPEAN PHYSICAL JOURNAL C

Review

50 Years of quantum chromodynamics

Introduction and Review

Franz Gross^{1,2,a}, Eberhard Klempt^{3,b}, Stanley J. Brodsky⁴, Andrzej J. Buras⁵, Volker D. Burkert¹, Gudrun Heinrich⁶, Karl Jakobs⁷, Curtis A. Meyer⁸, Kostas Orginos^{1,2}, Michael Strickland⁹, Johanna Stachel¹⁰, Guila Zanderighi^{11,12}, Nora Brambilla^{5,12,13}, Peter Braun-Munzinger^{10,14}, Daniel Britzger¹¹, Simon Capstick¹⁵, Tom Cohen¹⁶, Volker Crede¹⁵, Martha Constantinou¹⁷, Christine Davies¹⁸, Luigi Del Debbio¹⁹, Achim Denig²⁰, Carleton De⁺Tar²¹, Alexandre Deur¹, Siguel A. Escobedo²⁶, Harald Fritzsch²⁷, Kenji Fukushima²⁸, Paolo Gambino^{11,29}, Dag Gillberg^{30,31}, Steven Gottlieb³⁷, Per Grafstrom^{33,34}, Massimiliano Grazzini³⁵, Boris Grube¹, Alexey Guskov³⁶, Toru Iijima³⁷, Xiangdong Ji¹⁶, Frithjof Karsch³⁸, Stefan Kluth¹¹, John B. Kogut^{39,40}, Frank Krauss⁴¹, Shunzo Kumano^{42,43}, Derek Leinweber⁴⁴, Pierre Maris⁵¹, Simone Marzani⁵², Wally Melnitchouk¹,

Quantum Chromodynamics (QCD)

[Wilczek, 2000]

< ロト < 同ト < ヨト < ヨト

*Notable Property: Asymptotic Freedom

Nobel Prize of Physics 2004 - Wilczek/Gross and Politzer

*Notable Property (?): Color Confinement

Hardest Millenium Unsolved Problem:

[As of 25/02/2025]

< □ > < 凸

Non-perturbative QCD Vacuum Structure

We show QCD animations obtained by [D. Leinweber, 2003-2004]:The Euclidean Action Density (or Energy Density)

$$S_{E}(\vec{x},t) = rac{1}{2} F^{ab}_{\mu
u}(\vec{x},t) F^{ba}_{\mu
u}(\vec{x},t) = \operatorname{Tr}\left(\vec{E}^{2}(\vec{x},t) + \vec{B}^{2}(\vec{x},t)\right)$$

• Flux tubes in QCD ground-state vacuum fields:

2. Pulsating Source of Radiation \rightarrow **Pulsar**

[https://cnx.org/contents/v-2lbQIC@10/Pulsars-and-the-Discovery-of-Neutron-Stars]

Stages of stellar evolution (very simplified plot!)

Nuclear-matter formation through gravitational-collapse processes

• • • • • • • • • • • •

Example: The famous Crab nebula

This nebula contains a fast rotating neutron star

< <p>Image: A transmission of the second sec

José C. Jiménez (CBPF) QCD Trace Anomaly in Twin Neutron Stars

Pulsar Mass Observations [Lattimer, 2012]

José C. Jiménez (CBPF) QCD Trace Anomaly in Twin Neutron Stars

Maximal mass NS constraint

Radii data by NICER for canonical and maximal NS

Bands of data from NICER (Neutron Star Interior Composition Explorer)

Stellar Structure: The TOV Equations

- Tolman (1934) and Oppenheimer with Volkov (1939) derived the equations for hydrostatic equilibrium in relativistic stars in order to obtain their, in principle, observable **masses** and **radii**.
- These equations are

$$\frac{dP}{dr} = -\frac{G\mathscr{M}(r)\epsilon(r)}{r^2} \left[1 + \frac{P(r)}{\epsilon(r)}\right] \left[1 + \frac{4\pi r^3 P(r)}{\mathscr{M}(r)}\right] \left[1 - \frac{2G\mathscr{M}(r)}{r}\right]^{-1},$$
$$\frac{d\mathscr{M}}{dr} = 4\pi r^2 \epsilon(r),$$

with boundary conditions + physical conditions

 $P(r=0) = P_0, \quad \mathscr{M}(r=0) = 0, \quad P(r=R) = 0, \quad \mathscr{M}(R) = M.$

• To be solved consistently, one needs the microphysics input called Equation of State (EoS): $P = P(\epsilon)$ or $\epsilon = \epsilon(P)$.

The Oppenheimer-Volkov limit (1939)

• They modeled NS as a gas of relativistic degenerate neutrons in hydrostatic equilibrium with gravity, thus obtaining

(Sagert, Hempel, Greiner, JSB 2006)

Then, interactions + new phases are important !

Neutron-star interiors with exotic phases

Several existing EoS in the literature

Several different behaviors in the MR diagram

What about their dynamical stability?

By Newton's 2nd law one has

$$m\frac{d^2}{dt^2}x = -\frac{dV}{dx}$$

which becomes the following if assuming small perturbations $\xi(t)$ around a position of mechanical equilibrium $x_{A,B}$ (a constant), i.e. $x(t) = x_{A,B} + \xi(t) + O(\xi^2)$:

$$m\frac{d^2}{dt^2}\xi = -\left(\frac{\partial^2 V}{\partial x^2}\right)_{x_{A,B}}\xi.$$

Now, assuming a harmonic perturbation one would use as a reasonable ansatz $\xi(t) \propto \exp(\pm i\omega_{A,B}t)$, thus producing

$$\omega_{A,B}^2 \equiv \frac{1}{m} \left(\frac{\partial^2 V}{\partial x^2} \right)_{x_{A,E}}$$

What about their dynamical stability?

Example: The Famous 2D Pendulum

For this well-known oscillating problem, one has a potential energy of the form

$$V(\theta) = mgL\cos\theta,$$

thus giving

$$\omega^2 < 0$$
, for $\theta \in [\pi/2, 3\pi/2]$.

Relativistic Stellar Stability: General

Defining $\Delta r/r \equiv \xi$ and ΔP as the independent variables for the pulsation problem, one gets the coupled differential equations [Gondek *et al.*, 1997]:

$$rac{d\xi}{dr} = -rac{1}{r}\left(3\xi + rac{\Delta P}{\Gamma P}
ight) - rac{dP}{dr}rac{\xi}{(P+\epsilon)} \,,$$

and

$$\begin{split} \frac{d\Delta P}{dr} &= \xi \left\{ \omega^2 e^{\lambda - \nu} (P + \epsilon) r - 4 \frac{dP}{dr} \right\} + \\ &\qquad \xi \left\{ \left(\frac{dP}{dr} \right)^2 \frac{r}{(P + \epsilon)} - 8\pi e^{\lambda} (P + \epsilon) P r \right\} + \\ &\qquad \Delta P \left\{ \frac{dP}{dr} \frac{1}{P + \epsilon} - 4\pi (P + \epsilon) r e^{\lambda} \right\} \;, \end{split}$$

where ω is the oscillation frequency.

Relativistic Stellar Stability: 1st-order Phase Transitions in Hybrid Neutron Stars

$$\tau_{reactions} \ll \omega_0^{-1} \sim 1 \text{ ms}$$

$$\begin{cases} \Delta p^+ = \Delta p^- \\ \left[\xi - \frac{\Delta p}{r p_0'} \right]^+ = \left[\xi - \frac{\Delta p}{r p_0'} \right]^- \end{cases}$$

 $\tau_{reactions} \gg \omega_0^{-1} \sim 1 \text{ ms}$

$$\begin{cases} \Delta p^+ = \Delta p^- \\ \xi^+ = \xi^- \end{cases}$$

José C. Jiménez (CBPF)

3. Phase diagram (cartoon) of QCD

Thermal and dense QCD: Simple prescription but a challenging calculation

• The total pressure of a QCD can be obtained from

$$P(T, \{\mu_i\}) = T \log \int \mathcal{D} \bar{\psi} \mathcal{D} \psi \mathcal{D} A_{\mu} e^{-\int d^3 x \int_0^{1/T} d\tau \mathcal{L}_{ ext{QCD}}^{ ext{E}}}.$$

• For $T \neq 0$ and $\mu \leq T$: Lattice-gauge-field theory methods **apply**.

- For μ ≥ T: Unfeasible due to the fermionic sign problem.
 In general, this is an example of the NP ≠ P conjecture proposed as a Millenium Problem still lacking a proof [arXiv: 0408370, 2007.05436].
- Perturbative control at low densities (chiral effective field theory) and at ultra-high densities (perturbative QCD through $\alpha_s(\mu) \sim 1/\log(\mu^2)$), both in the **cold limit**.

くぼう くほう くほう しほ

The lattice QCD equation of state at finite 'T'

Chiral Effective (Perturbation) Theory

Hierarchy of chiral nuclear interactions up to fifth order in the chiral expansion [C. Drischler et al., 2010].

Cold and dense perturbative QCD (pQCD)

$$P(\mu_B)/P_{\text{free}} \sim 1 + \underbrace{c_1 g^2}_{NLO} + \underbrace{c_2 g^4 + c_2' g^4 \log g}_{NNLO} + \underbrace{c_3' g^6 \log^2 g + c_3'' g^6 \log g + \dots}_{N^3 LO}$$

< ∃

OPEN Evidence for quark-matter cores in massive neutron stars

Eemeli Annala¹, Tyler Gorda^{2™}, Aleksi Kurkela^{3,4™}, Joonas Nättilä^{5,6,7} and Aleksi Vuorinen^{1™}

[Nature Phys. 16 (2020) 9, 907-910]

Ex.: Constraining the neutron star equation of state

Ex.: Constraining the neutron star equation of state

4. Some Recent Related Work

PHYSICAL REVIEW D 110, 114014 (2024)

How the QCD trace anomaly behaves at the core of twin stars?

José C. Jiménez⁽⁰⁾,^{1,2} Lucas Lazzari⁽⁰⁾,³ and Victor P. Gonçalves⁽⁰⁾,^{3,4}

¹Departament of Astrophysics, Brazilian Center for Research in Physics (CBPF), Rua Doutor Xavier Sigaud, 150, URCA, Rio de Janeiro CEP 22210-180, Rio de Janeiro, Brazil ²Universidaal Tecnológica del Perú, Arequipa - Perú ³Institute of Physics and Mathematics, Federal University of Pelotas, Postal Code 354, 96010-900, Pelotas, Rio Grande do Sul, Brazil ⁴Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China

(Received 23 August 2024; accepted 21 November 2024; published 9 December 2024)

We investigate the behavior of the dense and cold (normalized) quantum chromodynamics (QCD) trace anomaly, Δ , in the interior of twin neutron stars (obtained from several sets of equations of state in agreement with modern compact-star and multimessenger data) satisfying static and dynamic stability conditions. We scan the formed twin-star parameter space in order to look for effects caused by the presence of a strong first-order phase transition connecting hadron and quark phases by means of a Maxwell construction. We found robustly that Δ suffers an abrupt decrease around the transition point, even reaching large negative values ($\Delta \simeq -0.35$), in marked contrast to current studies pointing out a

[JCJ et al., 2024]

< □ > < □ > < □ > < □ > < □ > < □ >

Motivation

Phase boundaries and EoS (left) and corresponding M-R diagram (right) [Ecker et al., 2402.11013]

< □ > < 凸

Motivation

[Naseri et al., 2406.15544]

Twin-star matter essentials

Trace anomaly in dense matter

• QCD trace anomaly as measure of breaking conformal invariance:

$$\eta_{\mu\nu}T^{\mu\nu}_{\rm QCD} \equiv T^{\mu}_{\mu} = rac{eta_{
m QCD}}{2g}G^a_{\mu\nu}G^{\mu\nu}_a + (1+\gamma_m)\sum_f m_f\overline{q}_f q_f.$$

• Thermal/dense case:

$$\left\langle T^{\mu}_{\mu}\right\rangle_{\mu_{B},T}=\epsilon-3P.$$

• Normalized thermal/dense case:

$$\Delta \equiv \frac{\langle T^{\mu}_{\mu} \rangle_{\mu_{B},T}}{3\epsilon} = \frac{1}{3} - \frac{P}{\epsilon}.$$

• Causality ($P=\epsilon$, i.e. $c_s^2=1$) and non-relativistic ($P\ll\epsilon$) limits

$$-rac{2}{3}(pprox-0.667)\leq\Delta<rac{1}{3}(pprox0.333).$$

Trace anomaly in neutron-star interiors

Trace anomaly behavior with different NS data [Y. Fujimoto *et al.*, PRL 129, 252702 (2022)]

In-medium Trace Anomaly in QCD Matter

Behavior of \triangle for different kinds of extreme matter [J. C. J. *et al.*, 2408.11614]

Twin-star Matter and Seidov's Criterium

• Constant-speed-of-sound parametrization for the equation of state

$$\epsilon(P) = \begin{cases} \epsilon_{\rm H}(P) & P < P_t, \\ \epsilon_{\rm H}(P_t) + \Delta \epsilon + s^{-1}(P - P_t) & P > P_t. \end{cases}$$

• Seidov's criterium to ensure the twin-star branch in the MR diagram

$$\Delta \epsilon \geq \Delta \epsilon_{
m crit} \equiv rac{1}{2} \epsilon_t + rac{3}{2} P_t$$

• Particular set of parameters (in units of $MeV fm^{-3}$) used

Category	$\epsilon_{H}^{\max} = \epsilon_{t}$	ϵ_Q^{\min}	P_t	$\Delta \epsilon$	c_s^2
I	333.08	607.34	70	274	1
	333.08	878.88	70	545	1
	263.73	441.62	30	178	1
IV	212.91	370.85	10	157	1

Studied Twin-Star Equations of State

Family of EoSs for Category I-IV stable twin stars with rapid conversions.

M–*R* for rapid Category II twin stars

Δ for rapid Category II twin stars

M-R for slow Category II twin stars

José C. Jiménez (CBPF) QCD Trace Anomaly in Twin Neutron Stars

Δ for slow Category II twin stars

Some insights for dense QCD

• Conjecture of $\Delta > 0$ (Fujimoto et al., 2022) through

$$\frac{\epsilon - 3P}{P_{\text{ideal}}} = \mu_B \frac{dN_{\text{eff}}}{d\mu_B} > 0,$$

where $N_{\text{eff}} \equiv P/P_{\text{ideal}}$ and $P_{\text{ideal}} \equiv N_c N_f \frac{\mu_B^4}{12\pi^2}$.
In our case, a finite latent heat, Q_i is present:

$$Q = \mu_{c} \Delta n_{B} = \left\langle T^{\mu}_{\mu} (\mu^{+}_{B} \to \mu_{c}) \right\rangle_{Q} - \left\langle T^{\mu}_{\mu} (\mu^{-}_{B} \to \mu_{c}) \right\rangle_{H},$$

or equivalently

۵

$$\frac{Q}{\mu_{c}^{4}} = \mu_{c} \left[\left(\frac{dN_{\text{eff}}^{Q}}{d\mu_{B}^{+}} \right) - \left(\frac{dN_{\text{eff}}^{H}}{d\mu_{B}^{-}} \right) \right]_{\mu_{B}^{\pm} \to \mu_{c}}$$

•

< ロ > < 同 > < 三 > < 三 > < 三 > <

- The **standard model** of particle physics is better to be understood as an **effective theory**.
- Color confinement and (hadron) mass generation from QCD (from an analytic viewpoint) are the hardest and relevant questions of modern theoretical physics.
- Multimessenger astrophysics is expected to give insights into the **building** and **constraining** of the equation of state for QCD matter.
- The modern paradigm in QCD is that even if we don't have full answers, **insights** should be gained in every possible way.

But don't forget ...

æ