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Introduccion

Cinco formas dinamicas de la relatividad especial

Dirac (1949): Tres formas dinamicas:

Instantanea Forma-punto Frente de luz (plano nulo)
%0 ad=x%a>0 xt ~ K0+ 58

Leutwyler y Stern (1978): Dos formas dinamicas mas (y no mas):

L-S1
L-S2

a2 = ("2 (G2 —-(®)r , a>0 ,
a? = (x°)? — (x3)? , a>0

Cinco descripciones de la relatividad = Cinco teorias de campos cuanticos.
Preguntas: ;Cual es la correcta? ;Son equivalentes?
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_ Dwoduecion
Dinamica del frente de luz

Desde el punto de vista tedrico/practico, en la forma dinamica del frente de luz:
1) Problema de valores iniciales bien definido; existe teoria de campos.
2) Dinamica mas simple (apenas tres hamiltonianos).
3) Se puede usar técnicas impracticables en la dinamica instantanea.
Problemas: Propagador de Feynman del campo de Dirac:
S = (L - T

—m2 40t 2p_

Reglas de Feynman:

-------------- /d4qTr (@8 (p - 9)]

m Polos espurios requieren regularizacion — Prescripciones (VP, LM, BL, ...).

Es de absoluta importancia establecer una teoria tan exitosa, desde el punto de vista practico,
sobre solidas bases.
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Teoria de perturbacién causal, en el plano nulo

Axioma de causalidad

Operador de dispersion S(g) (dependiente de funcion de conmutacién adiabatica g € S(R*)):

s(¢) =idr + 3 - [ T00g00aX,

neN

To(X) = Tuloxr; -+ 5x0) 5 g(X) = glx1) -+~ g(xn) , dX = dx; - d*xy .

Axioma de causalidad:

Vg1, 8 € S(RY) :  supp(g1) <supp(gz) = S(g+g&) = S(g)S(g1) -

Si supp(g1) ~ supp(gz), entonces la factorizacion causal aln es valida, pero S(g1) y S(g2)
conmutan.

Perturbativamente:
X=X1UXp, X1 < Xo = Tn(X) = Tm(Xz)Ty,_m(Xl) ;
X1 <Xz = [Ta(X); Tw(Y)] = 0.

El axioma de causalidad se puede adaptar a la forma dinamica del frente de luz especificando
que la cronologia es referida a la coordenada x ~ x° + x3.
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Teoria de perturbacién causal, en el plano nulo

Ordenamiento cronologico

La multiplicacion de una distribucion por una funcion discontinua es la fuente de divergencias
ultravioletas (Bogolitbov y Parasiuk):
— ~ A d
83(p) = (2)/* [ deBl@)3(p— g) = iem) /2 [ 8

g+iot

Se debe usar solo operaciones bien definidas en la teoria de distribuciones.
Stepanov/Epstein-Glaser: usar el axioma de causalidad.

T(X1 UXs) — T(X2)T(X1) = { [T(Xl)?T(Xz)] : X < );21 (i))((lzN Xz)

“=0(X1 — Xo) [T(X1); T(X2)] "

Esta es distribucion avanzada en relacion a X;. Generalizando:

n

n{1;Xn) = - m A1) dn(Ar),
An(Y; %n) (=n! To (X1) -+ T, (X7)
= Xiyree X, 20
XU UX,=YU{xn}
Vj£k:X;NX =0
Xn€Xr

n

R(Viz) = S-S () T (X) -

r=1 Xi,000 Xr #0
XjU---UX,=YU{x, }
VjFk: XN X =0
xn€X1
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Teoria de perturbacién causal, en el plano nulo

Procedimiento inductivo causal

Separamos la distribucion de n puntos:
An(Y;xn) = To(Y U {xn}) + AL (Y; xn)
Ra(Y;2n) = Ta(Y U {xn}) + Ry (Y; xn) -
Distribucion causal:
Dn(Y; xn) := Ra(Y;2n) — An(Y;n) = Ry (Y; xn) — A7 (Y3 xn)
La distribucion de n puntos puede recuperarse por division de Dy:

Tu(YU {x1}) = An(Y; xn) — A;(Y; xn) = Rn(Y; xn) — R;(Y; Xn)

Dp(x1;-++ ;xn) = Zdﬁ(xl; i) 1 Gk (u)
Distribucion numeérica: ‘
d(x) = d,’f(xl — Xn; o 3 Xn—1 — %n; 0) = r(x) — a(x) ,
supp(r) C T/, (0) . supp(a) ST, ,(0).

Division seglin x requiere conocer el comportamiento
de denel eje x™.
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Teoria de perturbacién causal, en el plano nulo

Orden singular en el eje x~

Definicion: Sea d € S(R™) y sea p funcion continua positiva. Si el limite

lim p(s)s>™/4d (sx+; sxts xf) =d_(x)

s—ot

existe en S(]R'")’ y es no nulo, entonces d_ es la cuasi-asintota de d en el eje x—, en
relacion a la funcion p.

Consecuencia: p es una funcion de automodelo:

lim p(as) = g®
s—ot p(s)

o p(s) =s"po(s) ,
po: funcion de variacion lenta.
Definicion: Si la cuasi-asintota de d € S(R™)’ en el eje x~ se obtiene con la funcion de

automodelo p(s) = s“— po(s), entonces el nimero w_ es el orden singular en el eje x~ de
la distribucion d.

El orden singular en el eje x~ determina el espacio de funciones de prueba sobre el que
puede resolverse el problema de division de la distribucion causal.
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Teoria de perturbacién causal, en el plano nulo

Distribucion numérica retardada

Para w_ < 0: Distribucion retardada definida sobre S(R™):

#p) =

i / d((prt —kip)i- s (o1t —kip, 1) 71‘/ dpr —kip)

dk =
27 k+ iot 2m k+iot

Para w_ > 0: Distribucion retardada definida sobre funciones de prueba del tipo ¢(x) =

(er)b1 (xt )bz ?(x), p(x) € S (R™), by + by, = |b| = w—. Su extension a todo S(R™) no es
Unica (problema de normalizacion), sino que incluye distribuciones arbitrarias con soporte en

el eje x~:
i dk |- = .
) = [ o | — ki) - D
w-]

+ Z Cb p+Pa ’ |b|:b1+b2
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Teoria

Algunos teoremas

Teorema: Si la distribucion causal es covariante de Lorentz y su orden singular en el eje x~ es
mayor o igual a su orden singular en el origen x = 0, entonces las condiciones de normalizacion
de covariancia de Lorentz de la distribucion retardada y preservacion del orden singular pueden
ser satisfechas simultaneamente.

Teorema: Los axiomas de Bogolitbov—Medvedev—Polivanov para el operador de dispersion,
I. invariancia de Lorentz,
1. invariancia translacional,
I1l. causalidad,
V. unitaridad,
poseen solucion perturbativa en la forma dinamica del frente de luz, para los modelos en que

las distribuciones causales son covariantes de Lorentz.

* Estos teoremas no son directamente aplicables en el importante caso de las teorias de gau-
ge. En tal caso es necesario reformularlos en funcion de la covariancia de la matriz fisica de
dispersion (en otra oportunidad).
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Modelo de Yukawa

Autoenergia del fermion |

Modelo de Yukawa: .
Ti(x) = : ()7 (x) : () -

Distribucion causal del segundo orden:
Dy (315 x2) = [Ti(3a); Ti(x2)] -
Para la autoenergia del fermion:
D () = () d()(x) s = P(R)AYGa): , yi=x -,
d(y) = =7 (S+ (1D+(y) = S-(MD-(¥) -
En el espacio de los impulsos:
~ i ~ ~
Dx(p) = ig@(iP—N(PZ —m) . St(p)=(p+mD=(p).

Luego:

) = gy o = L1+ o= ) o),

4(2m)3 2
N ; b 1 2(m? 4+ m? m? — m2)?2
dl(P) — sgn(pf)@ {pz _ (ml + mz)l} pz\/l _ ( lp2 2) + ( 1 p4 2)

Propagadores de Feynman no aparecen en el calculo de distribuciones de loop (ausencia de
polos espurios).
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Modelo de Yukawa

Autoenergia del fermion I

Foérmulas de division = Basta dividir di, w_[di] = —1 < 0.
i dk
7 =— [ ——a —k;pi;p—
71(p) o s —kpLip)
_ 2 2 2(ml +mf)  (mE—mj)
_77+ﬁ (P—)@[P(m1+m2)}¢1 o + p ,
“+oo
j=pv [ VB kb ()]
= Ty s— (mi+ m)? [s — (m1 — mg)?] .
(m1+my)?

Multiplicando por el polinomio factorizado para obtener r y substrayendo r’:

S(p) = —— (mlpz - g [P + (m} — m%)])

4(2m)t

me 4 m2 me — m2)2
X{](p)lﬂ'@[pz(m1+m2)z] plz\/lz( lp—l_ 2)+( 1p4 2) }
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Modelo de Yukawa

Autoenergia del fermion Il

7 puede calcularse analiticamente:

(1) Para p? €] — oo; (m1 — my)?[U](m1 + my)?; 4o0l:

2 _ 2 2 _ 2 2 2
g P (m—m) {b al+blog(‘1+bD—a+blog<a+1>}.

p a? 1—b 2a a—1

(2) Parap? € [(m1 — mg)%; (m1 + mg)?):

PP —(m —mp)? (B —d?)?

i pt 2a(a® + b?)?
1 1 2a(a® + b
X [(b2 —ad*)log (a+ ) + 4abtan™! <7> — M} .
a—1 b a? —1
En estas expresiones:
a:m1+m2>1 b— p%—(m1+mz):2
m = my P2 — (s — ma)?

Finalmente, las distribuciones arbitrarias (normalizacion) son fijadas por la condicién fisica de
estabilidad del sector de una particula.
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Resultados adicionales

Teorema: En el modelo de Yukawa en el frente de luz, el orden singular de todas las distribu-
ciones causales en el eje x~ es igual a su orden singular en el origen x = 0. Ademas, todas las
distribuciones causales son covariantes de Lorentz.

Corolario: El modelo de Yukawa en el frente de luz posee solucion perturbativa que satisface
a los axiomas de Bogolitbov-Medvedev—Polivanov y a la preservacion del orden singular.

En ausencia de las dificultades de regularizacion/prescripciones para tratar los polos espurios,
la equivalencia con los resultados de la dinamica instantanea puede ser establecida de forma
clara y directa.
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Campos en interaccion

Variables dinamicas locales en interaccion

Las correcciones, debido a la interaccion, al monomio de Wick B(x) construido con campos
libres pueden obtenerse a partir del “operador de dispersion extendido”, S(g; gg), con término
del primer orden

Sigin) i= [ d'x (Ti(x)g(x) — BE)g() -

La variable dinamica en interaccion se obtiene segun la

Formula de Stepanov-Bogolitibov:

«95(g; g8)

B(sg) =5 5o

88=0
La construccion por teoria de perturbacion causal es posible si se asume:

Axioma extendido de la causalidad: Para cualesquiera gj, g € {g; g8}

_ 5 (&@&)

RV T Set \ og(y)

S(g; gB)*) =0;

(S(EgB)*M)

dgj(x) agr(y)
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Campos en interaccion

Propiedades de las variables dinamicas locales

Teorema (microcausalidad):

x~y = [B(x;8);B(y;8)]l: =0.

Se usa el conmutador si B(x; g) tiene caracter bosonico, el anticonmutador si fermionico.

Teorema (operador autoadjunto):

B(fi9) =B 5 B(9)i= [ d'xf(Bxg).

Expresion perturbativa de la variable dinamica:

1
B(xig) =B(x) +3_ /Bn(xs v yn)gn) - g(ym)diyr - dyn,
neN

Ba(x;y15++ 5 ¥n) = Abyy (313 3 ymi %)

El procedimiento inductivo de la teoria de perturbacion causal permite hallar las distribuciones
B, sin el aparecimiento de divergencias.
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Campos en interaccion

Ecuaciones del movimiento

Es posible demostrar que los campos y corrientes en interaccion del modelo de Yukawa satis-
facen a las ecuaciones

O+ m))®(x; 8) = —g(x) (V) (x38) ,
(i — m)¥(x; g) = g(x) (¥P) (x;8) ,

V(i) (19 +m) = —g(x) (T@) (xig)

si y solo si las distribuciones avanzadas y retardadas de los campos libres son normalizadas
de forma que

(On+ m)Dae (y=x) =6y =), (i = ma)Sov (x = ) = =5(x = 7).

ret

Esta normalizacion es posible en la dinamica del frente de luz, y solo cuando ella es conside-
rada se obtiene la equivalencia con la dinamica instantanea.
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Campos en interaccion

Construccion de las corrientes

Las corrientes son variables dinamicas locales definidas por su condicion inicial y de ningun
modo son iguales al simple producto de campos en interaccion (cantidades indefinidas):

(T) (x;8) # V(x;8)P(x;8) -

El lado izquierdo es construido por el procedimiento causal:
(UP)(x;8) = p(x)¥(x) — /S'et(x =¥y 1e(@)e(y): gv)d'y

+ /D'Et(x =) PeNY(x): gly)d'y — /Eret(x - »Y»egdy + (g% .

El lado derecho es la “cantidad” divergente
V(x;8)2(x; 8) = p(x)¥(x) — /Sret(x =Y se)e(y): gly)d'y
+ [ =) BRI gty

- i/ [S—(x = y)D™(y — x) — $*'(x — y)D4 (x — ¥)] ¥(»)g(¥)d*y + 6(g%) .

Incluso los bien definidos campos en interaccion no pueden ser multiplicados en el mismo
punto, sino que todas las cantidades deben ser cuidadosamente construidas desde el inicio.
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Conclusiones

Existen cinco formas dinamicas de la relatividad especial. Sobre cada una de ellas se puede
construir una teoria cuantica de campos.

La teoria cuantica de campos en la forma dinamica del frente de luz es ventajosa para
resolver algunos problemas, pero enfrenta dificultades tedricas/ambigiiedades en la for-
mulacion convencional.

Las ambigtiedades desaparecen al utilizar las herramientas matematicas adecuadas (teoria
de distribuciones). Se desarrollo la teoria de perturbacion causal para dicha forma dinami-
ca y se establecio la existencia de soluciones a los axiomas de Bogolitbov-Medvedev-
Polivanov para una clase de modelos (Yukawa).

Las variables dinamicas (entre ellos los campos en interaccion) pueden introducirse me-
diante la formula de Stepanov—Bogolitbov.

Las variables dinamicas se definen por su valor libre y no son iguales al producto de los
campos en interaccion.

Las ecuaciones de campo en interaccion son condiciones de normalizacion. Solo cuando
ellas son adoptadas se obtiene la teoria equivalente a la dinamica instantanea.
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