
TPC y
campos en
interacción
en el frente

de luz

Introducción

Teorı́a de
perturba-
ción causal
en el plano
nulo

Modelo de
Yukawa

Campos en
interacción

Conclusiones

Referencias

TPC y campos en interacción en el frente de luz

Teorı́a de perturbación causal y campos en interacción
en el frente de luz

O. A. Acevedo1 y B. M. Pimentel2

1 Grupo de Fı́sica Teórica y Altas Energı́as
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Introducción

Cinco formas dinámicas de la relatividad especial

Dirac (1949): Tres formas dinámicas:

Instantánea Forma-punto Frente de luz (plano nulo)
x0 a2 = x2, a > 0 x+ ∼ x0 + x3

Leutwyler y Stern (1978): Dos formas dinámicas más (y no más):

L-S 1 : a2 = (x0)2 − (x1)2 − (x2)2 , a > 0 ,
L-S 2 : a2 = (x0)2 − (x3)2 , a > 0 .

Cinco descripciones de la relatividad⇒ Cinco teorı́as de campos cuánticos.
Preguntas: ¿Cuál es la correcta? ¿Son equivalentes?
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Introducción

Dinámica del frente de luz

Desde el punto de vista teórico/práctico, en la forma dinámica del frente de luz:

1) Problema de valores iniciales bien definido; existe teorı́a de campos.

2) Dinámica más simple (apenas tres hamiltonianos).

3) Se puede usar técnicas impracticables en la dinámica instantánea.

Problemas: Propagador de Feynman del campo de Dirac:

ŜF (p) = (2π)−2
(

/p + m

p2 − m2 + i0+
−

γ+

2p−

)
.

Reglas de Feynman:∫
d4qTr

[
ŜF (q)ŜF (p − q)

]

Polos espurios requieren regularización→ Prescripciones (VP, LM, BL, …).

Es de absoluta importancia establecer una teorı́a tan exitosa, desde el punto de vista práctico,
sobre sólidas bases.
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Teorı́a de perturbación causal, en el plano nulo

Axioma de causalidad

Operador de dispersión S(g) (dependiente de función de conmutación adiabática g ∈ S(R4)):

S(g) = idF +
∑
n∈N

1
n!

∫
Tn(X)g(X)dX ,

Tn(X) ≡ Tn(x1; · · · ; xn) , g(X) ≡ g(x1) · · · g(xn) , dX ≡ d4x1 · · · d4xn .

Axioma de causalidad:

∀g1, g2 ∈ S(R4) : supp(g1) < supp(g2) ⇒ S(g1 + g2) = S(g2)S(g1) .

Si supp(g1) ∼ supp(g2), entonces la factorización causal aún es válida, pero S(g1) y S(g2)
conmutan.

Perturbativamente:

X = X1 ∪ X2, X1 < X2 ⇒ Tn(X) = Tm(X2)Tn−m(X1) ;

X1 < X2 ⇒ [Tn(X); Tm(Y)] = 0 .

El axioma de causalidad se puede adaptar a la forma dinámica del frente de luz especificando
que la cronologı́a es referida a la coordenada x+ ∼ x0 + x3.
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Teorı́a de perturbación causal, en el plano nulo

Ordenamiento cronológico

La multiplicación de una distribución por una función discontinua es la fuente de divergencias
ultravioletas (Bogoliúbov y Parasiuk):

Θ̂δ(p) = (2π)−1/2
∫

dqΘ̂(q)δ̂(p − q) = i(2π)−3/2
∫

dq
q + i0+

.

Se debe usar solo operaciones bien definidas en la teorı́a de distribuciones.
Stepanov/Epstein-Glaser: usar el axioma de causalidad.

T(X1 ∪ X2)− T(X2)T(X1) =

{
0 ; X1 < X2 (o X1 ∼ X2)

[T(X1); T(X2)] ; X1 > X2

“ = Θ(X1 − X2) [T(X1); T(X2)] ” .

Esta es distribución avanzada en relación a X1. Generalizando:

An(Y ; xn) :=
n∑

r=1
(−1)r−1

∑
X1,··· ,Xr ̸=∅
X1∪···∪Xr=Y∪{xn}
∀j ̸=k:Xj∩Xk=∅
xn∈Xr

Tn1 (X1) · · · Tnr (Xr) ,

Rn(Y ; xn) :=
n∑

r=1
(−1)r−1

∑
X1,··· ,Xr ̸=∅
X1∪···∪Xr=Y∪{xn}
∀j ̸=k:Xj∩Xk=∅
xn∈X1

Tn1 (X1) · · · Tnr (Xr) .
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Teorı́a de perturbación causal, en el plano nulo

Procedimiento inductivo causal

Separamos la distribución de n puntos:

An(Y ; xn) = Tn(Y ∪ {xn}) + A′
n(Y ; xn)

Rn(Y ; xn) = Tn(Y ∪ {xn}) + R′n(Y ; xn) .

Distribución causal:

Dn(Y ; xn) := Rn(Y ; xn)− An(Y ; xn) = R′n(Y ; xn)− A′
n(Y ; xn)

La distribución de n puntos puede recuperarse por división de Dn:

Tn(Y ∪ {xn}) = An(Y ; xn)− A′
n(Y ; xn) = Rn(Y ; xn)− R′n(Y ; xn)

Dn(x1; · · · ; xn) =
∑
k

dkn(x1; · · · ; xn) :Ck
(
uA

)
:

Distribución numérica:

d(x) := dkn(x1 − xn; · · · ; xn−1 − xn; 0) = r(x)− a(x) ,

supp(r) ⊆ Γ+
n−1(0) , supp(a) ⊆ Γ−

n−1(0) .

División según x+ requiere conocer el comportamiento
de d en el eje x−.
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Teorı́a de perturbación causal, en el plano nulo

Orden singular en el eje x−

Definición: Sea d ∈ S(Rm)′ y sea ρ función continua positiva. Si el ĺımite

ĺım
s→0+

ρ(s)s3m/4d
(
sx+; sx⊥; x−

)
= d−(x)

existe en S(Rm)′ y es no nulo, entonces d− es la cuasi-ası́ntota de d en el eje x−, en
relación a la función ρ.

Consecuencia: ρ es una función de automodelo:

ĺım
s→0+

ρ(as)
ρ(s)

= aα , ρ(s) = sαρ0(s) ,

ρ0: función de variación lenta.

Definición: Si la cuasi-ası́ntota de d ∈ S(Rm)′ en el eje x− se obtiene con la función de
automodelo ρ(s) = sω−ρ0(s), entonces el número ω− es el orden singular en el eje x− de
la distribución d.

El orden singular en el eje x− determina el espacio de funciones de prueba sobre el que
puede resolverse el problema de división de la distribución causal.
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Teorı́a de perturbación causal, en el plano nulo

Distribución numérica retardada

Para ω− < 0: Distribución retardada definida sobre S(Rm):

r̂(p) =
i
2π

∫ d̂
(
(p1+ − k; p1); · · · ; (pn−1+ − k; pn−1)

)
k + i0+

dk ≡
i
2π

∫
d̂(p+ − k; p)

k + i0+
dk .

Para ω− ≥ 0: Distribución retardada definida sobre funciones de prueba del tipo φ(x) =(
x+

)b1 (x⊥)b2 φ̃(x), φ̃(x) ∈ S (Rm), b1 + b2 = |b| = ω−. Su extensión a todo S(Rm) no es
única (problema de normalización), sino que incluye distribuciones arbitrarias con soporte en
el eje x−:

r̂q(p) =
i
2π

∫
dk

k + i0+

d̂(p+ − k; p)−
⌊ω−⌋∑
|c|=0

1
c!
(p+,α − q+,α)

cDc
+,αd̂(q+ − k; q⊥; p−)


+

⌊ω−⌋∑
b=0

Ĉb(p−)pb1+pb2α , |b| = b1 + b2 .
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Teorı́a de perturbación causal, en el plano nulo

Algunos teoremas

Teorema: Si la distribución causal es covariante de Lorentz y su orden singular en el eje x− es
mayor o igual a su orden singular en el origen x = 0, entonces las condiciones de normalización
de covariancia de Lorentz de la distribución retardada y preservación del orden singular pueden
ser satisfechas simultáneamente.

Teorema: Los axiomas de Bogoliúbov–Medvedev–Polivanov para el operador de dispersión,

I. invariancia de Lorentz,

II. invariancia translacional,

III. causalidad,

IV. unitaridad,

poseen solución perturbativa en la forma dinámica del frente de luz, para los modelos en que
las distribuciones causales son covariantes de Lorentz.

⋆ Estos teoremas no son directamente aplicables en el importante caso de las teorı́as de gau-
ge. En tal caso es necesario reformularlos en función de la covariancia de la matriz fı́sica de
dispersión (en otra oportunidad).
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Modelo de Yukawa

Autoenergı́a del fermión I

Modelo de Yukawa:
T1(x) = :ψ(x)γ5ψ(x) : φ(x) .

Distribución causal del segundo orden:

D2(x1; x2) = [T1(x1); T1(x2)] .

Para la autoenergı́a del fermión:

D(AEF)
2 (x1; x2) = :ψ(x1)d(y)ψ(x2) : − :ψ(x2)d(−y)ψ(x1) : , y := x1 − x2 ,

d(y) = −γ5 (S+(y)D+(y)− S−(y)D−(y)) γ5 .
En el espacio de los impulsos:

D̂±(p) = ±
i
2π

Θ(±p−) δ(p2 − m2) , Ŝ±(p) = (/p + m)D̂±(p) .

Luego:

d̂(p) =
1

4(2π)3

{
m1p2 −

/p

2
[
p2 + (m2

1 − m2
2)
]}

d̂1(p) ,

d̂1(p) = sgn(p−)Θ
[
p2 − (m1 + m2)

2] 1
p2

√
1−

2(m2
1 + m2

2)

p2
+

(m2
1 − m2

2)
2

p4

Propagadores de Feynman no aparecen en el cálculo de distribuciones de loop (ausencia de
polos espurios).
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Modelo de Yukawa

Autoenergı́a del fermión II

Fórmulas de división⇒ Basta dividir d1, ω−[d1] = −1 < 0.

r̂1(p) =
i
2π

∫
dk

k + i0+
d̂1(p+ − k; p⊥; p−)

=
i
2π

J +
1
2p2

sgn(p−)Θ
[
p2 − (m1 + m2)

2]√1−
2(m2

1 + m2
2)

p2
+

(m2
1 − m2

2)
2

p4
,

J = PV

+∞∫
(m1+m2)2

ds
s2(p2 − s)

√
[s − (m1 + m2)2] [s − (m1 − m2)2] .

Multiplicando por el polinomio factorizado para obtener r y substrayendo r′:

Σ̂(p) =
1

4(2π)4

(
m1p2 −

/p

2
[
p2 + (m2

1 − m2
2)
])

×
{
J(p)− iπΘ

[
p2 − (m1 + m2)

2] 1
p2

√
1−

2(m2
1 + m2

2)

p2
+

(m2
1 − m2

2)
2

p4

}
.
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Modelo de Yukawa

Autoenergı́a del fermión III

J puede calcularse anaĺıticamente:

(1) Para p2 ∈]−∞; (m1 − m2)2[ ∪ ](m1 + m2)2; +∞[:

J =
p2 − (m1 − m2)2

p4

[
b2 − a2

a2 − 1
+ b log

(∣∣∣∣ 1+ b
1− b

∣∣∣∣)− a2 + b2

2a
log

(
a+ 1
a− 1

)]
.

(2) Para p2 ∈ [(m1 − m2)2; (m1 + m2)2]:

J =
p2 − (m1 − m2)2

p4
(b2 − a2)2

2a(a2 + b2)2

×
[
(b2 − a2) log

(
a+ 1
a− 1

)
+ 4ab tan−1

(
1
b

)
−

2a(a2 + b2)
a2 − 1

]
.

En estas expresiones:

a =
m1 + m2

m1 − m2
> 1 b =

√∣∣∣∣ p2 − (m1 + m2)2

p2 − (m1 − m2)2

∣∣∣∣ .
Finalmente, las distribuciones arbitrarias (normalización) son fijadas por la condición fı́sica de
estabilidad del sector de una partı́cula.
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Modelo de Yukawa

Resultados adicionales

Teorema: En el modelo de Yukawa en el frente de luz, el orden singular de todas las distribu-
ciones causales en el eje x− es igual a su orden singular en el origen x = 0. Además, todas las
distribuciones causales son covariantes de Lorentz.

Corolario: El modelo de Yukawa en el frente de luz posee solución perturbativa que satisface
a los axiomas de Bogoliúbov–Medvedev–Polivanov y a la preservación del orden singular.

En ausencia de las dificultades de regularización/prescripciones para tratar los polos espurios,
la equivalencia con los resultados de la dinámica instantánea puede ser establecida de forma
clara y directa.



TPC y
campos en
interacción
en el frente

de luz

Introducción

Teorı́a de
perturba-
ción causal
en el plano
nulo

Modelo de
Yukawa

Campos en
interacción

Conclusiones

Referencias

TPC y campos en interacción en el frente de luz

Campos en interacción
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Campos en interacción

Variables dinámicas locales en interacción

Las correcciones, debido a la interacción, al monomio de Wick B(x) construı́do con campos
libres pueden obtenerse a partir del “operador de dispersión extendido”, S(g; gB), con término
del primer orden

S1(g; gB) :=
∫

d4x (T1(x)g(x)− iB(x)gB(x)) .

La variable dinámica en interacción se obtiene según la

Fórmula de Stepanov–Bogoliúbov:

B(x; g) := i S(g)∗
δS(g; gB)
δgB(x)

∣∣∣∣
gB=0

.

La construcción por teorı́a de perturbación causal es posible si se asume:

Axioma extendido de la causalidad: Para cualesquiera gj , gk ∈ {g; gB}:

x ≲ y ⇒
δ

δgj(x)

(
δS(g; gB)
δgk(y)

S(g; gB)∗
)

= 0 ;

x ≳ y ⇒
δ

δgj(x)

(
S(g; gB)∗

δS(g; gB)
δgk(y)

)
= 0 .
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Campos en interacción

Propiedades de las variables dinámicas locales

Teorema (microcausalidad):

x ∼ y ⇒ [B(x; g);B(y; g)]∓ = 0 .

Se usa el conmutador si B(x; g) tiene carácter bosónico, el anticonmutador si fermiónico.

Teorema (operador autoadjunto):

B(f ; g)∗ = B(f ; g) ; B(f ; g) :=
∫

d4xf (x)B(x; g) .

Expresión perturbativa de la variable dinámica:

B(x; g) = B(x) +
∑
n∈N

1
n!

∫
Bn(x; y1; · · · ; yn)g(y1) · · · g(yn)d4y1 · · · d4yn ,

Bn(x; y1; · · · ; yn) = AB
n+1(y1; · · · ; yn; x) .

El procedimiento inductivo de la teorı́a de perturbación causal permite hallar las distribuciones
Bn sin el aparecimiento de divergencias.
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Campos en interacción

Ecuaciones del movimiento

Es posible demostrar que los campos y corrientes en interacción del modelo de Yukawa satis-
facen a las ecuaciones

(□+ m2
2)Φ(x; g) = −g(x)

(
ΨΨ

)
(x; g) ,

(i/∂ − m1)Ψ(x; g) = g(x) (ΨΦ) (x; g) ,

Ψ(x; g)
(
i
←−
/∂ + m1

)
= −g(x)

(
ΨΦ

)
(x; g) ,

si y solo si las distribuciones avanzadas y retardadas de los campos libres son normalizadas
de forma que

(□x + m2
2)Dav

ret
(y − x) = δ(y − x) , (i/∂x − m1)Sav

ret
(x − y) = −δ(x − y) .

Esta normalización es posible en la dinámica del frente de luz, y solo cuando ella es conside-
rada se obtiene la equivalencia con la dinámica instantánea.
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Campos en interacción

Construcción de las corrientes

Las corrientes son variables dinámicas locales definidas por su condición inicial y de ningún
modo son iguales al simple producto de campos en interacción (cantidades indefinidas):

(ΨΦ) (x; g) ̸= Ψ(x; g)Φ(x; g) .

El lado izquierdo es construido por el procedimiento causal:

(ΨΦ)(x; g) = φ(x)ψ(x)−
∫

Sret(x − y)ψ(y) :φ(x)φ(y) : g(y)d4y

+

∫
Dret(x − y) :ψ(y)ψ(y)ψ(x) : g(y)d4y −

∫
Σret(x − y)ψ(y)g(y)d4y + O(g2) .

El lado derecho es la “cantidad” divergente

Ψ(x; g)Φ(x; g) = φ(x)ψ(x)−
∫

Sret(x − y)ψ(y) :φ(x)φ(y) : g(y)d4y

+

∫
Dret(x − y) :ψ(y)ψ(y)ψ(x) : g(y)d4y

− i
∫ [

S−(x − y)Dav(y − x)− Sret(x − y)D+(x − y)
]
ψ(y)g(y)d4y + O(g2) .

Incluso los bien definidos campos en interacción no pueden ser multiplicados en el mismo
punto, sino que todas las cantidades deben ser cuidadosamente construidas desde el inicio.
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Conclusiones

1 Existen cinco formas dinámicas de la relatividad especial. Sobre cada una de ellas se puede
construir una teorı́a cuántica de campos.

2 La teorı́a cuántica de campos en la forma dinámica del frente de luz es ventajosa para
resolver algunos problemas, pero enfrenta dificultades teóricas/ambigüedades en la for-
mulación convencional.

3 Las ambigüedades desaparecen al utilizar las herramientas matemáticas adecuadas (teorı́a
de distribuciones). Se desarrolló la teorı́a de perturbación causal para dicha forma dinámi-
ca y se estableció la existencia de soluciones a los axiomas de Bogoliúbov–Medvedev–
Polivanov para una clase de modelos (Yukawa).

4 Las variables dinámicas (entre ellos los campos en interacción) pueden introducirse me-
diante la fórmula de Stepanov—Bogoliúbov.

5 Las variables dinámicas se definen por su valor libre y no son iguales al producto de los
campos en interacción.

6 Las ecuaciones de campo en interacción son condiciones de normalización. Solo cuando
ellas son adoptadas se obtiene la teorı́a equivalente a la dinámica instantánea.
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