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Scalar-Tensor Theories and Lyra Geometry

A natural extension of GR consists of scalar-tensor theories, where a scalar
degree of freedom complements the metric field. Well-known examples
include Kaluza–Klein and Brans–Dicke theories.

In this context, Lyra proposed a generalization of Riemannian geometry by
introducing a scale function φ into the definition of the reference frame. Lyra
geometry enlarges spacetime transformations to include both diffeomorphisms
and scale transformations, modifying the notions of connection, curvature,
and geodesics.
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Lyra Scalar-Tensor Gravity

Early formulations of Lyra gravity suffered from conceptual and variational
inconsistencies or reduced to known scalar-tensor models. Recently, a
consistent scalar-tensor theory on Lyra’s manifold (Lyra Scalar-Tensor gravity,
LyST) was constructed from symmetry principles.

In this work, we:
• Derive the field equations from a well-defined action.
• Construct the spherically symmetric (Lyra-Schwarzschild) solution.
• Study massive and massless particle motion via the Hamilton–Jacobi

formalism.
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Lyra Manifolds

LetM be a topological manifold, then:
• A Lyra reference system (LRS) is a triple (U , χ,Φ), where (U , χ) is a chart

of the manifold and Φ : U → R∗ is a continuous map, called scale map.
Here, R∗ denotes the set of all positive real numbers.

• A Lyra atlas is a collection of Lyra reference systems,
A = {(Uα, χα,Φα)}α∈I , that coversM.

• The collection A is said to be a smooth Lyra atlas if any two Lyra
reference systems in A are smoothly compatible and scale maps are
smooth.

• The maximal extension of a smooth Lyra atlas A is the collection of all
Lyra reference systems smoothly compatible with every element of A.
This is called a maximal smooth Lyra atlas.

• A smooth Lyra manifold of dimension n is a pair (M,A), whereM is an
n-dimensional topological manifold and A is a maximal smooth Lyra
atlas onM.

The Lyra Spacetime The Lyra-Schwarzschild Spacetime 7 / 43



Tensors
Given a LRS (U , χ,Φ), the associated Lyra vector basis and its dual are
defined, respectively, as

eµ =
1

φ(x)

∂

∂xµ
and eµ = φ(x)dxµ. (1)

The commutation of these vectors, [eµ, eν ] = γλµνeλ, determines the
corresponding structure coefficients:

γλµν = φ−2(δλµ∂νφ− δλν ∂µφ). (2)

The transformation rules for base vectors and covectors are given by

eµ → ēµ =
φ (x)

φ̄ (x̄)

∂xν

∂x̄µ
eν , eµ → ēµ =

φ̄ (x̄)

φ (x)

∂x̄µ

∂xν
eν . (3)

This implies the following transformation rule for tensor field components:

T̄µ1···µr
ν1···νs (x̄) =

(
φ̄(x̄)

φ(x)

)r−s (
∂x̄µ1

∂xα1
· · ·

∂x̄µr

∂xαr

∂xβ1

∂x̄ν1
· · ·

∂xβs

∂x̄νs

)
Tα1···αr

β1···βs (x),
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Geometric Structure

The metric tensor is introduced as a non-degenerate symmetric tensor field

g : Γ(TM)× Γ(TM)→ C∞(M). (4)

The line element in a Lyra basis is written as:

ds2 = φ2gµνdx
µdxν (5)

From here, one obtains the geodesic equation:

d2xµ

dt2
+
{
µ
αβ

}dxα
dt

dxβ

dt
+
(
δµα∇βφ+ δµβ∇αφ− gαβg

µν∇νφ
)dxα
dt

dxβ

dt
= 0, (6)

and the volume element:

dV = φn(x)
√∣∣det(g)

∣∣ dnx . (7)
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Affine structure

A connection ∇ is defined in the usual way as an operator acting upon two
vector fields. Then, one of the entries is extended to tensor fields, thus giving
the covariant derivative:

∇λTµ1···µr
ν1···νs = eλT

µ1···µr
ν1···νs

+ Γµ1
σλT

σ···µr
ν1···νs + · · ·+ Γµr

σλT
µ1···σ

ν1···νs

− Γσν1λT
µ1···µr

σ···νs − · · · − ΓσνsλT
µ1···µr

ν1···σ. (8)

Here,
∇λTµ1···µr

ν1···νs :=
(
∇eλT

)µ1···µr
ν1···νs ,

and Γλµν are the connection coefficients, which fully determine the connection.

The auto-parallel curve equation is:

d2xµ

dt2
+
(
φΓµαβ + δµα∇βφ

) dxα
dt

dxβ

dt
= 0. (9)
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Torsion:
ταµν = Γανµ − Γαµν − γαµν . (10)

Curvature:

Rαβµν = eµΓαβν + ΓαλµΓλβν − eνΓαβµ − ΓαλνΓλβµ − Γαβλγ
λ
µν . (11)

First Bianchi identity:

Rα[βµν] = ∇[βτ
α
µν] + ταλ[βτ

λ
µν]. (12)

Second Bianchi identity:

Rαβ[µν;ρ] + Rαβλ[ρτ
λ
µν] = 0. (13)

Non-metricity tensor:

Mαµν = ∇αgµν −∇µgαν −∇νgµα. (14)

General expression for the connection coefficients:

Γλµν = φ−1
{
λ
µν

}
+

1
2
gλα(γµαν + γναµ − γαµν)

+
1
2
Mλ

µν +
1
2
gλα(τµαν + τναµ − ταµν). (15)
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LyST Connection

Some preliminary considerations:
• Equivalence between geodesic curves and auto-parallel curves.
• Existence of a generalized divergence theorem on Lyra manifolds.
• Preservation of the scalar product of parallel transported vector fields.
• Absence of spin sources or fermionic matter fields.

This leads to
∇λgµν = 0 and τλµν = 0. (16)

Then, the expression of the connection coefficients reduces to

Γµαβ = φ−1
{
µ
αβ

}
+ φ−1(δµβ∇αφ− gαβ∇µφ

)
. (17)

From here on, the connection will be assumed to have this form, and it will be
referred to as the LyST connection.
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Curvature in the LyST Connection

Curvature:

Rαβµν = φ−2Rαβµν + φ−2(δαµgβν − δαν gβµ)∇λφ∇λφ
+ φ−1(δαν∇µ∇βφ− δαµ∇ν∇βφ+ gβµ∇ν∇αφ− gβν∇µ∇αφ

)
. (18)

Ricci tensor:

Rβν = φ−2Rβν + (n − 1)φ−2gβν∇λφ∇λφ

− (n − 2)φ−1∇ν∇βφ− φ−1gβν∇λ∇λφ. (19)

Ricci scalar:

R = φ−2R+ n(n − 1)φ−2∇λφ∇λφ− 2(n − 1)φ−1∇λ∇λφ. (20)

Simmetries:

Rαβµν = −Rαβνµ, Rαβµν = −Rβαµν , Rαβµν = Rµναβ . (21)
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Minimal Coupling Prescription

Given a matter field ψa in a Minkowski background with metric ηµν , the
corresponding lagrangian density is extended to a Lyra spacetime through the
substitution

LM

(
ηµν , ψa, ∂αψa

)
→ LM

(
gµν , ψa,∇αψa

)
. (22)

Here, the scale function φ is naturally incorporated through the connection,
ensuring that the resulting Lagrangian density remains invariant under
general Lyra transformations.

The stationary-action principle δSM = 0, with the boundary condition δψa = 0,
leads to the Euler-Lagrange field equations for the matter field:

∂LM

∂ψa
−∇µ

∂LM

∂∇µψa
= 0. (23)
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Field Equations
The gravitational action in a four-dimensional Lyra spacetime is taken to be

SG =
1
2κ

∫
V

d4x φ4√|det(g)|R, (24)

The gravitational field equations follow from δS = 0 under variations of gµν
and φ, with δgµν , δφ and δ∇µφ vanishing on the boundary ∂V .

The resulting equations are

Rµν −
1
2
Rgµν = κTµν and R = κM, (25)

where
Tµν := −2

∂LM

∂gµν
+ gµνLM , (26)

and
M = −4LM +

∂LM

∂∇µφ
∇µφ− φ

(
∂LM

∂φ
−∇µ

∂LM

∂∇µφ

)
. (27)

Note that there is a constraint:

M = −T . (28)
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Newtonian Limit

Consider:
• Non-relativistic velocities: | dx

i

dt
| � 1.

• Static fields: ∂0gµν = 0 and ∂0φ = 0.
• Weak fields: gµν ≈ ηµν + hµν and φ = 1 + δφ, with |hµν | � 1 and
|δφ| � 1.

The resulting equation of motion is

d2~x

dt2
≈ −∇U, (29)

and the gravitational field equation reduces to

∇2U ≈ κ

2
ρ =⇒ κ = 8π, (30)

where U is the effective Newtonian potential:

U :=
1
2
h00 + δφ. (31)
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Spherical Symmetry

In spherical coordinates, the corresponding Killing vectors are

ξµ(1) = (0, 0,− sinϕ,− cot θ cosϕ),

ξµ(2) = (0, 0, cosϕ,− cot θ sinϕ),

ξµ(3) = (0, 0, 0, 1).

(32)

The symmetry constraints for the scale function and the metric tensor are

ξµ(i)∂µφ = 0 and ξα(i)∂αgµν + ∂µξ
α
(i)gαν + ∂νξ

α
(i)gµα = 0. (33)

This yields the expression

ds2 = φ2(t, r)
[
g00(t, r) dt2 + 2g01(t, r) dtdr + g11(t, r) dr2 + g22(t, r) dΩ2],

and, by performing convenient transformations, it is reduced to

ds2 = φ2(t, r)
[
A(t, r) dt2 − B(t, r) dr2 − r2 (dθ2 + sin2 θ ϕ2) ]. (34)
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Explicit Equations

Write the undetermined functions in exponential form

φ(t, r) = eγ(t,r), A(t, r) = eα(t,r), B(t, r) = eβ(t,r), (35)

and use Cartan’s procedure. The resulting equations are:

1
r2

+
(
3γ̇2 + 2γ̇β̇

)
e−2α −

(
2γ′′ + γ′2 − 2γ′β′ +

4γ′

r
−

2β′

r
+

1
r2

)
e−2β = 0,

−2

(
γ̇′ − γ̇α′ − γ′β̇ − γ′γ̇ −

β̇

r

)
e−α−β = 0,

1
r2

+
(
2γ̈ + γ̇2 − 2γ̇α̇

)
e−2α −

(
3γ′2 + 2γ′α′ +

4γ′

r
+

2α′

r
+

1
r2

)
e−2β = 0,

(
β̈ + 2γ̈ + β̇2 + γ̇2 + 2γ̇β̇ − 2γ̇α̇− α̇β̇

)
e−2α

−
(
α′′ + 2γ′′ + α′2 + γ′2 + 2γ′α′ − 2γ′β′ − α′β′ +

2γ′

r
+
α′

r
−
β′

r

)
e−2β = 0.
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Vacuum Solution

The general vacuum solution is

ds2 =

(
1− a

rφ

)
dt2 − (rφ)′2(

1− a

rφ

) dr2 − r2φ2 (dθ2 + sin2 θ dϕ2) . (36)

where φ = φ(r) is arbitrary. Use this gauge freedom to obtain a
Schwarzschild-type solution, i.e. such that A(r) = 1/B(r). This yields

ds2 = φ2(r)

[
µ(r) dt2 − dr2

µ(r)
− r2 (dθ2 + sin2 θ dϕ2)] , (37)

where

φ(r) =

(
1−

r

rL

)−1
and µ(r) =

(
1−

r

rL

)2 (
1−

a

r
+

a

rL

)
=

(
1−

r

rL

)2 1−
rS

r

1−
rS

rL

.
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Note that the exact Schwarzschild form can be obtained through the
transformation

r̃ = rφ(r). (38)

but also as the particular case of Eq. (37) in the limit rL →∞. Therefore, the
parameter rS may be consistently regarded as the natural generalization of the
Schwarzschild radius.

If the line element (37) is interpreted as an exterior solution, the function µ(r)
must remain positive, which holds for rS < r . Additionally, r̄ > 0 implies
r < rL. Cosmological observations indicate the existence of structures on
extremely large scales, implying that spacetime is either infinite or bounded
by a value of rL far beyond the currently observed scales. The latter scenario is
mathematically plausible, provided that cosmological observations occur in a
range rS � r � rL—a limit where the coordinates r and r̄ are practically
indistinguishable. Because of the significant implications, expression (37) is
worthy of attention, and it will be referred to as the Lyra-Schwarzschild line
element.
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Correction to Newtonian Gravity

In order to calculate the effective Newtonian potential, Taylor-expand the
functions φ and µ in the regime rS � r � rL. To second order, this
computation produces the equation of motion

d2r

dt2
= −mG

r2 +
3mG

r2
L

(
1− rS

rL

)
− 3r

r2
L

, (39)

where mG is the geometric mass:

mG =
r̄S
2

=
rS

2
(

1− rS
rL

) ≈ rS
2

(
1 +

rS
rL

)
, (40)

Eq. (39) shows that, in LyST geometry, the geometric mass—acting as the
primary effective gravitational source—depends on both rS and rL. Moreover,
the second-order corrections give rise to a constant repulsive acceleration and
a linear term in r , analogous to an anti–de Sitter contribution.
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Finally, the equation of motion in the Newtonian limit for a Schwarzschild
spacetime with cosmological constant Λ reads

d2r

dt2
= −mG

r2 +
Λr

3
. (41)

By comparing Eqs. (39) and (41) when rS � r , one finds that the
cosmological constant is related to the Lyra radius through

Λ ≈ − 9
r2
L

, (42)

showing that the spacetime behaves as in anti-de Sitter geometry rS � r � rL.
These results indicate that LyST geometry naturally reproduces the expected
Schwarzschild behavior at short distances while introducing a well-defined
large-distance modification that becomes relevant only near the geometric
boundary set by rL.
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The Hamilton-Jacobi Approach
The Lagrangian and Hamiltonian of a free particle in LyST theory are given by

L(x , ẋ , λ) =
1
2
mφ2gµν ẋ

µẋν , and H(x , p, λ) =
1

2mφ2 g
µνpµpν , (43)

where m is the rest mass, ẋµ = dxµ/dλ are the velocities, and pµ = ∂L/∂ẋµ

are the canonical conjugate momenta. If λ is an affine parameter,

φ2gµν ẋ
µẋν = ε =

{
1, massive particles;
0, photons.

(44)

The Hamilton principal function S(x ,P, λ) generates a canonical
transformation from the coordinates (x , p) to the new coordinates (X ,P),
where Xµ and Pµ are constants. The canonical relations are given by

pµ =
∂S(x ,P, λ)

∂xµ
and Xµ =

∂S(x ,P, λ)

∂Pµ
. (45)

The evolution of the system is governed by the Hamilton–Jacobi equation:

H

(
x ,
∂S

∂x
, λ

)
+
∂S

∂λ
= 0. (46)
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The general solution of (46) is:

S = −
εmλ

2
+ Et − `ϕ±

∫
dr

√
E2

µ2 −
εm2φ2

µ
−

`2

µr2
, (47)

Here, the coordinate θ does not appear, as the motion is confined to a plane
passing through the origin, which can be chosen such that θ = π

2 . Now, by
replacing S in the second relation of (45), one obtains:

t = ±k

∫
dr

µ

√
k2 − εµφ2 −

h2µ

r2

, (48a)

λ = ±

∫
φ2 dr√

k2 − εµφ2 −
h2µ

r2

, (48b)

ϕ = ±h

∫
dr

r2

√
k2 − εµφ2 −

h2µ

r2

, (48c)

where k = E/m and h = `/m are the specific energy and the specific angular
momentum.
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Massive Particles

For massive particles, ε = 1 and λ = τ is the proper time. From (48a):

E =
1
2

˙̃r2 + Veff =
1
2
φ4 ṙ2 + Veff, (49)

where E = (k2 − 1)/2. Here, the quantity Veff is the effective potential

Veff := −
mG

r̃
+

h2

2r̃2
−

mGh
2

r̃3
(50)

= −
mG

r

(
1−

r

rL

)
+

h2

2r2

(
1−

r

rL

)2
−

mGh
2

r3

(
1−

r

rL

)3
. (51)

Moreover, from (48c), one obtains:

d2ũ

dϕ2 = −
1
h2

dVeff
dũ

=
mG

h2 − ũ + 3mG ũ
2 , (52)

whose solution for ũ = 1/r̃ is the standard Schwarzschild result.
Furthermore, the solution for u = 1/r follows from u = ũ + uL, with uL = 1/rL.
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The different types of motion can be determined by analyzing the behavior of
the effective potential as a function of the parameters ` and mG . To this end, it
is necessary to examine the first and second derivatives of the effective
potential:

dVeff

dr
=

dr̃

dr

dVeff

dr̃
= φ2 dVeff

dr̃
, (53)

d2Veff

dr2 =
d2 r̃

dr2
dVeff

dr̃
+

(
dr̃

dr

)2
d2Veff

dr̃2 =
2φ3

rL

dVeff

dr̃
+ φ4 d

2Veff

dr̃2 . (54)

Since φ 6= 0, the number of critical points is the same in both coordinate
systems, (

dVeff

dr

)
rcrit

=

(
dVeff

dr̃

)
r̃crit

= 0, (55)

as well as their stability,

sgn
(
d2Veff

dr2

)
rcrit

= sgn
(
d2Veff

dr̃2

)
r̃crit

. (56)
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From Eq. (55), the critical points are given by

r± = 6mG

(1 +
6mG

rL

)
∓

√
1−

12m2
G

h2

−1

. (57)

• h2 < 12m2
G : No critical points.

• h2 = 12m2
G : One inflection point at rinf ≡ 6mG

(
1 + 6mG

rL

)−1
.

• h2 > 12m2
G : Two equilibrium points: r+ (stable) and r− (unstable).

On the other hand, the roots of the effective potential are given by

R± = 4mG

(1 +
4mG

rL

)
∓

√
1−

16m2
G

h2

−1

. (58)

• h2 < 16m2
G : No real roots.

• h2 = 16m2
G : One root, given by R0 ≡ 4mG

(
1 + 4mG

rL

)−1
.

• h2 > 16m2
G : Two different roots.

In addition, the following asymptotic behavior is observed:

Veff(r̃ →∞) ≡ Veff(r → rL)→ 0−, (59)

Veff(r̃ → 0) ≡ Veff(r → 0)→ −∞. (60)
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Photons

In the case of photons, ε = 0, and we cannot define proper time. From (48b):

m2
G

b2 =
m2

G

h2 φ
4 ṙ2 + Veff, (61)

where b = h/k. Here, the effective potential is identified as:

Veff :=
m2

G

r̃2

(
1−

2mG

r̃

)
(62)

=
m2

G

r2

(
1−

r

rL

)2 (
1−

2mG

r
+

2mG

rL

)
. (63)

Once again, from (48c), one obtains:

d2ũ

dϕ2 = −
1

2m2
G

dVeff
dũ

= −ũ + 3mG ũ
2, (64)

whose solution for ũ = 1/r̃ is the standard Schwarzschild result and
u = ũ + uL.
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In this case, there is only one critical point:

r̃c = 3mG or rc =
3mG

1 + 3mG
rL

, (65)

which is an unstable equilibrium point, giving the maximum value for the
potential:

Vmax
eff = Veff(rc) =

1
27
. (66)

On the other hand, there is also only one root of the effective potential, which
is precisely the Schwarzschild radius:

r̃S = 2mG or rS =
2mG

1 + 2mG
rL

. (67)

Moreover, the following asymptotic behavior is observed:

Veff(r̃ →∞) ≡ Veff(r → rL)→ 0+ , (68)

Veff(r̃ → 0) ≡ Veff(r → 0)→ −∞ . (69)
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Figure 2:

Free Particle Motion The Lyra-Schwarzschild Spacetime 36 / 43



Gravitational Redshift
Consider light source and an observer, both with fixed spatial coordinates
(rE , θE , ϕE ) and (rR , θR , ϕR), respectively. The source emits a pulse at time tE
and received by the observer at time tR . Another pulse is emitted by the
source at time (tE + ∆tE ) and received by the observer at time (tR + ∆tR).
The photons will follow null geodesics and, by choosing a parameterization λ,
one can write:

tR − tE =

∫ λR

λE

dλµ−1/2
(
−gij

dx i

dλ

dx j

dλ

)1/2

. (70)

This integral depends only on the initial and final points, so it is the same for
both pulses:

tR − tE = (tR + ∆tR)− (tE + ∆tE ) ⇒ ∆tE = ∆tR . (71)

Now, both the source and the observer are fixed in space. So the proper time
of their curves is dτ2 = ds2 = φ2g00 dt

2. Thus,

∆τE

∆τR
=

√
φ2(rE )µ(rE )∆tE√
φ2(rR)µ(rR)∆tR

=

√√√√√1− 2mG
rE

+ 2mG
rL

1− 2mG
rR

+ 2mG
rL

. (72)
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The gravitational redshift is defined in terms of the emission and reception
wavelengths:

z =
λR − λE

λE
. (73)

Here, λ represents a wavelength instead of the parameter in Eq. (70).
Wavelengths and frequencies are related through λ ∝ ν−1 ∝ ∆τ . Therefore,
the general form of the gravitational redshift in Lyra spacetime is:

z =

√√√√1− 2mG
rR

+ 2mG
rL

1− 2mG
rE

+ 2mG
rL

− 1. (74)

In particular, when the light source and the observer are far away from the
gravitational source, such that rE , rR � rS , expression (74) simplifies to

z ≈ mG

rE

(
1− rE

rR

)
. (75)

Redshift, properly speaking, occurs when rE > rR , while blueshift occurs in the
opposite case. This remains true for the general expression (74).
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Causal Structure

The radial motion (h = 0) for photons is determined by Eq. (48a), whose
solution is given by

t± = τ ±

[
r

1− r
rL

+ 2mG ln

(
r

1− r
rL

− 2mG

)]
, (76)

where τ is an integration constant. Note that this expression diverges for
r = rS and r = rL. However, the only physical singularity is r = 0, as one can
verify from the expression of the Kretschmann scalar:

K =
48m2

G

r̃6
=

12r2S
r6

(
1− r

rL

)6

(
1− rS

rL

)2 . (77)

Therefore, r = rS and r = rL are just coordinate singularities, as shown in
Figure 3.
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Figure 3:

In this figure continuous lines represent ingoing photons and dashed lines
represent outgoing photons. The singularity r = rS can be removed in a
similar way to the Schwarzschild case. Meanwhile, the singularity r = rL is a
consequence of the transformation r̃ = rφ(r). This makes sense when
considering that r = rL corresponds to r̃ =∞, which is neither a physical
singularity nor a physical place.
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Final Remarks: Main Results

Lyra Scalar-Tensor gravity (LyST) is formulated on a Lyra manifold with a
torsion-free, metric-compatible connection. The fundamental dynamical fields
are the metric gµν and the scale function φ, making LyST a natural extension
of General Relativity with an additional geometrical degree of freedom.

The theory:
• Proves Birkhoff theorem under certain considerations on the scale

function.
• Recovers Newtonian gravity in the weak-field and static limit.
• Subleading corrections introduce repulsive and anti–de Sitter–like

effects, potentially relevant at very large scales.
• Some astronomical uncertainties allow lower bounds of the order

rL & 1021m.

The most general spherically symmetric solution depends on a free scale
function, but it is physically equivalent to the Schwarzschild solution via the
coordinate transformation r̃ = r φ(r).
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Thanks For Your Attention!
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