

The Lyra-Schwarzschild Spacetime

Joel Antony Paquiyauri Ruiz

Instituto de Física Teórica - Universidade Estadual Paulista (IFT-UNESP)
Co-authors: B. M. Pimentel, M. C. Bertin, and R. R. Cuzinatto.

December 18, 2025

- 1 Introduction
- 2 The Lyra Spacetime
- 3 Lyra Scalar-Tensor Gravity
- 4 Spherically Symmetric Solution
- 5 Free Particle Motion
- 6 Conclusions

1 Introduction

2 The Lyra Spacetime

3 Lyra Scalar-Tensor Gravity

4 Spherically Symmetric Solution

5 Free Particle Motion

6 Conclusions

A natural extension of GR consists of scalar-tensor theories, where a scalar degree of freedom complements the metric field. Well-known examples include Kaluza–Klein and Brans–Dicke theories.

In this context, Lyra proposed a generalization of Riemannian geometry by introducing a scale function ϕ into the definition of the reference frame. Lyra geometry enlarges spacetime transformations to include both diffeomorphisms and scale transformations, modifying the notions of connection, curvature, and geodesics.

Early formulations of Lyra gravity suffered from conceptual and variational inconsistencies or reduced to known scalar-tensor models. Recently, a consistent scalar-tensor theory on Lyra's manifold (Lyra Scalar-Tensor gravity, LyST) was constructed from symmetry principles.

In this work, we:

- Derive the field equations from a well-defined action.
- Construct the spherically symmetric (Lyra-Schwarzschild) solution.
- Study massive and massless particle motion via the Hamilton–Jacobi formalism.

1 Introduction

2 The Lyra Spacetime

3 Lyra Scalar-Tensor Gravity

4 Spherically Symmetric Solution

5 Free Particle Motion

6 Conclusions

Let \mathcal{M} be a topological manifold, then:

- A *Lyra reference system* (LRS) is a triple $(\mathcal{U}, \chi, \Phi)$, where (\mathcal{U}, χ) is a chart of the manifold and $\Phi : \mathcal{U} \rightarrow \mathbb{R}^*$ is a continuous map, called *scale map*. Here, \mathbb{R}^* denotes the set of all positive real numbers.
- A *Lyra atlas* is a collection of Lyra reference systems, $\mathcal{A} = \{(\mathcal{U}_\alpha, \chi_\alpha, \Phi_\alpha)\}_{\alpha \in I}$, that covers \mathcal{M} .
- The collection \mathcal{A} is said to be a *smooth Lyra atlas* if any two Lyra reference systems in \mathcal{A} are smoothly compatible and scale maps are smooth.
- The *maximal extension* of a smooth Lyra atlas \mathcal{A} is the collection of all Lyra reference systems smoothly compatible with every element of \mathcal{A} . This is called a *maximal smooth Lyra atlas*.
- A *smooth Lyra manifold* of dimension n is a pair $(\mathcal{M}, \mathcal{A})$, where \mathcal{M} is an n -dimensional topological manifold and \mathcal{A} is a maximal smooth Lyra atlas on \mathcal{M} .

Tensors

Given a LRS $(\mathcal{U}, \chi, \Phi)$, the associated Lyra vector basis and its dual are defined, respectively, as

$$e_\mu = \frac{1}{\phi(x)} \frac{\partial}{\partial x^\mu} \quad \text{and} \quad e^\mu = \phi(x) dx^\mu. \quad (1)$$

The commutation of these vectors, $[e_\mu, e_\nu] = \gamma^\lambda_{\mu\nu} e_\lambda$, determines the corresponding *structure coefficients*:

$$\gamma^\lambda_{\mu\nu} = \phi^{-2} (\delta^\lambda_\mu \partial_\nu \phi - \delta^\lambda_\nu \partial_\mu \phi). \quad (2)$$

The transformation rules for base vectors and covectors are given by

$$e_\mu \rightarrow \bar{e}_\mu = \frac{\phi(x)}{\bar{\phi}(\bar{x})} \frac{\partial x^\nu}{\partial \bar{x}^\mu} e_\nu, \quad e^\mu \rightarrow \bar{e}^\mu = \frac{\bar{\phi}(\bar{x})}{\phi(x)} \frac{\partial \bar{x}^\mu}{\partial x^\nu} e^\nu. \quad (3)$$

This implies the following transformation rule for tensor field components:

$$\bar{T}^{\mu_1 \dots \mu_r}_{\nu_1 \dots \nu_s}(\bar{x}) = \left(\frac{\bar{\phi}(\bar{x})}{\phi(x)} \right)^{r-s} \left(\frac{\partial \bar{x}^{\mu_1}}{\partial x^{\alpha_1}} \dots \frac{\partial \bar{x}^{\mu_r}}{\partial x^{\alpha_r}} \frac{\partial x^{\beta_1}}{\partial \bar{x}^{\nu_1}} \dots \frac{\partial x^{\beta_s}}{\partial \bar{x}^{\nu_s}} \right) T^{\alpha_1 \dots \alpha_r}_{\beta_1 \dots \beta_s}(x),$$

Geometric Structure

The metric tensor is introduced as a non-degenerate symmetric tensor field

$$g : \Gamma(T\mathcal{M}) \times \Gamma(T\mathcal{M}) \rightarrow C^\infty(\mathcal{M}). \quad (4)$$

The line element in a Lyra basis is written as:

$$ds^2 = \phi^2 g_{\mu\nu} dx^\mu dx^\nu \quad (5)$$

From here, one obtains the geodesic equation:

$$\frac{d^2 x^\mu}{dt^2} + \left\{ \begin{matrix} \mu \\ \alpha\beta \end{matrix} \right\} \frac{dx^\alpha}{dt} \frac{dx^\beta}{dt} + (\delta_\alpha^\mu \nabla_\beta \phi + \delta_\beta^\mu \nabla_\alpha \phi - g_{\alpha\beta} g^{\mu\nu} \nabla_\nu \phi) \frac{dx^\alpha}{dt} \frac{dx^\beta}{dt} = 0, \quad (6)$$

and the volume element:

$$dV = \phi^n(x) \sqrt{|\det(g)|} d^n x. \quad (7)$$

A connection ∇ is defined in the usual way as an operator acting upon two vector fields. Then, one of the entries is extended to tensor fields, thus giving the *covariant derivative*:

$$\begin{aligned}\nabla_{\lambda} T^{\mu_1 \cdots \mu_r}{}_{\nu_1 \cdots \nu_s} &= e_{\lambda} T^{\mu_1 \cdots \mu_r}{}_{\nu_1 \cdots \nu_s} \\ &+ \Gamma^{\mu_1}{}_{\sigma \lambda} T^{\sigma \cdots \mu_r}{}_{\nu_1 \cdots \nu_s} + \cdots + \Gamma^{\mu_r}{}_{\sigma \lambda} T^{\mu_1 \cdots \sigma}{}_{\nu_1 \cdots \nu_s} \\ &- \Gamma^{\sigma}{}_{\nu_1 \lambda} T^{\mu_1 \cdots \mu_r}{}_{\sigma \cdots \nu_s} - \cdots - \Gamma^{\sigma}{}_{\nu_s \lambda} T^{\mu_1 \cdots \mu_r}{}_{\nu_1 \cdots \sigma}.\end{aligned}\quad (8)$$

Here,

$$\nabla_{\lambda} T^{\mu_1 \cdots \mu_r}{}_{\nu_1 \cdots \nu_s} := (\nabla_{e_{\lambda}} T)^{\mu_1 \cdots \mu_r}{}_{\nu_1 \cdots \nu_s},$$

and $\Gamma^{\lambda}{}_{\mu\nu}$ are the *connection coefficients*, which fully determine the connection.

The auto-parallel curve equation is:

$$\frac{d^2 x^{\mu}}{dt^2} + (\phi \Gamma^{\mu}{}_{\alpha\beta} + \delta^{\mu}_{\alpha} \nabla_{\beta} \phi) \frac{dx^{\alpha}}{dt} \frac{dx^{\beta}}{dt} = 0. \quad (9)$$

Torsion:

$$\tau^\alpha_{\mu\nu} = \Gamma^\alpha_{\nu\mu} - \Gamma^\alpha_{\mu\nu} - \gamma^\alpha_{\mu\nu}. \quad (10)$$

Curvature:

$$R^\alpha_{\beta\mu\nu} = e_\mu \Gamma^\alpha_{\beta\nu} + \Gamma^\alpha_{\lambda\mu} \Gamma^\lambda_{\beta\nu} - e_\nu \Gamma^\alpha_{\beta\mu} - \Gamma^\alpha_{\lambda\nu} \Gamma^\lambda_{\beta\mu} - \Gamma^\alpha_{\beta\lambda} \gamma^\lambda_{\mu\nu}. \quad (11)$$

First Bianchi identity:

$$R^\alpha_{[\beta\mu\nu]} = \nabla_{[\beta} \tau^\alpha_{\mu\nu]} + \tau^\alpha_{\lambda[\beta} \tau^\lambda_{\mu\nu]}. \quad (12)$$

Second Bianchi identity:

$$R^\alpha_{\beta[\mu\nu;\rho]} + R^\alpha_{\beta\lambda[\rho} \tau^\lambda_{\mu\nu]} = 0. \quad (13)$$

Non-metricity tensor:

$$M_{\alpha\mu\nu} = \nabla_\alpha g_{\mu\nu} - \nabla_\mu g_{\alpha\nu} - \nabla_\nu g_{\mu\alpha}. \quad (14)$$

General expression for the connection coefficients:

$$\begin{aligned} \Gamma^\lambda_{\mu\nu} &= \phi^{-1} \left\{ \begin{smallmatrix} \lambda \\ \mu\nu \end{smallmatrix} \right\} + \frac{1}{2} g^{\lambda\alpha} (\gamma_{\mu\alpha\nu} + \gamma_{\nu\alpha\mu} - \gamma_{\alpha\mu\nu}) \\ &+ \frac{1}{2} M^\lambda_{\mu\nu} + \frac{1}{2} g^{\lambda\alpha} (\tau_{\mu\alpha\nu} + \tau_{\nu\alpha\mu} - \tau_{\alpha\mu\nu}). \end{aligned} \quad (15)$$

1 Introduction

2 The Lyra Spacetime

3 Lyra Scalar-Tensor Gravity

4 Spherically Symmetric Solution

5 Free Particle Motion

6 Conclusions

Some preliminary considerations:

- Equivalence between geodesic curves and auto-parallel curves.
- Existence of a generalized divergence theorem on Lyra manifolds.
- Preservation of the scalar product of parallel transported vector fields.
- Absence of spin sources or fermionic matter fields.

This leads to

$$\nabla_\lambda g_{\mu\nu} = 0 \quad \text{and} \quad \tau^\lambda_{\mu\nu} = 0. \quad (16)$$

Then, the expression of the connection coefficients reduces to

$$\Gamma^\mu_{\alpha\beta} = \phi^{-1} \left\{ \begin{matrix} \mu \\ \alpha\beta \end{matrix} \right\} + \phi^{-1} (\delta^\mu_\beta \nabla_\alpha \phi - g_{\alpha\beta} \nabla^\mu \phi). \quad (17)$$

From here on, the connection will be assumed to have this form, and it will be referred to as the *LyST connection*.

Curvature in the LyST Connection

Curvature:

$$\begin{aligned} R^\alpha_{\beta\mu\nu} &= \phi^{-2} \mathcal{R}^\alpha_{\beta\mu\nu} + \phi^{-2} (\delta^\alpha_\mu g_{\beta\nu} - \delta^\alpha_\nu g_{\beta\mu}) \nabla^\lambda \phi \nabla_\lambda \phi \\ &+ \phi^{-1} (\delta^\alpha_\nu \nabla_\mu \nabla_\beta \phi - \delta^\alpha_\mu \nabla_\nu \nabla_\beta \phi + g_{\beta\mu} \nabla_\nu \nabla^\alpha \phi - g_{\beta\nu} \nabla_\mu \nabla^\alpha \phi). \end{aligned} \quad (18)$$

Ricci tensor:

$$\begin{aligned} R_{\beta\nu} &= \phi^{-2} \mathcal{R}_{\beta\nu} + (n-1) \phi^{-2} g_{\beta\nu} \nabla^\lambda \phi \nabla_\lambda \phi \\ &- (n-2) \phi^{-1} \nabla_\nu \nabla_\beta \phi - \phi^{-1} g_{\beta\nu} \nabla^\lambda \nabla_\lambda \phi. \end{aligned} \quad (19)$$

Ricci scalar:

$$R = \phi^{-2} \mathcal{R} + n(n-1) \phi^{-2} \nabla^\lambda \phi \nabla_\lambda \phi - 2(n-1) \phi^{-1} \nabla^\lambda \nabla_\lambda \phi. \quad (20)$$

Simmetries:

$$R_{\alpha\beta\mu\nu} = -R_{\alpha\beta\nu\mu}, \quad R_{\alpha\beta\mu\nu} = -R_{\beta\alpha\mu\nu}, \quad R_{\alpha\beta\mu\nu} = R_{\mu\nu\alpha\beta}. \quad (21)$$

Minimal Coupling Prescription

Given a matter field ψ_a in a Minkowski background with metric $\eta_{\mu\nu}$, the corresponding lagrangian density is extended to a Lyra spacetime through the substitution

$$\mathcal{L}_M(\eta_{\mu\nu}, \psi_a, \partial_\alpha \psi_a) \rightarrow \mathcal{L}_M(g_{\mu\nu}, \psi_a, \nabla_\alpha \psi_a). \quad (22)$$

Here, the scale function ϕ is naturally incorporated through the connection, ensuring that the resulting Lagrangian density remains invariant under general Lyra transformations.

The stationary-action principle $\delta S_M = 0$, with the boundary condition $\delta \psi_a = 0$, leads to the Euler-Lagrange field equations for the matter field:

$$\frac{\partial \mathcal{L}_M}{\partial \psi_a} - \nabla_\mu \frac{\partial \mathcal{L}_M}{\partial \nabla_\mu \psi_a} = 0. \quad (23)$$

Field Equations

The gravitational action in a four-dimensional Lyra spacetime is taken to be

$$S_G = \frac{1}{2\kappa} \int_V d^4x \phi^4 \sqrt{|\det(g)|} R, \quad (24)$$

The gravitational field equations follow from $\delta S = 0$ under variations of $g_{\mu\nu}$ and ϕ , with $\delta g_{\mu\nu}$, $\delta\phi$ and $\delta\nabla_\mu\phi$ vanishing on the boundary ∂V .

The resulting equations are

$$R_{\mu\nu} - \frac{1}{2} R g_{\mu\nu} = \kappa T_{\mu\nu} \quad \text{and} \quad R = \kappa M, \quad (25)$$

where

$$T_{\mu\nu} := -2 \frac{\partial \mathcal{L}_M}{\partial g^{\mu\nu}} + g_{\mu\nu} \mathcal{L}_M, \quad (26)$$

and

$$M = -4\mathcal{L}_M + \frac{\partial \mathcal{L}_M}{\partial \nabla_\mu \phi} \nabla_\mu \phi - \phi \left(\frac{\partial \mathcal{L}_M}{\partial \phi} - \nabla_\mu \frac{\partial \mathcal{L}_M}{\partial \nabla_\mu \phi} \right). \quad (27)$$

Note that there is a constraint:

$$M = -T. \quad (28)$$

Newtonian Limit

Consider:

- Non-relativistic velocities: $|\frac{dx^i}{dt}| \ll 1$.
- Static fields: $\partial_0 g_{\mu\nu} = 0$ and $\partial_0 \phi = 0$.
- Weak fields: $g_{\mu\nu} \approx \eta_{\mu\nu} + h_{\mu\nu}$ and $\phi = 1 + \delta\phi$, with $|h_{\mu\nu}| \ll 1$ and $|\delta\phi| \ll 1$.

The resulting equation of motion is

$$\frac{d^2 \vec{x}}{dt^2} \approx -\nabla U, \quad (29)$$

and the gravitational field equation reduces to

$$\nabla^2 U \approx \frac{\kappa}{2} \rho \quad \Rightarrow \quad \kappa = 8\pi, \quad (30)$$

where U is the *effective Newtonian potential*:

$$U := \frac{1}{2} h_{00} + \delta\phi. \quad (31)$$

- 1 Introduction
- 2 The Lyra Spacetime
- 3 Lyra Scalar-Tensor Gravity
- 4 Spherically Symmetric Solution
- 5 Free Particle Motion
- 6 Conclusions

Spherical Symmetry

In spherical coordinates, the corresponding Killing vectors are

$$\begin{aligned}\xi_{(1)}^\mu &= (0, 0, -\sin \varphi, -\cot \theta \cos \varphi), \\ \xi_{(2)}^\mu &= (0, 0, \cos \varphi, -\cot \theta \sin \varphi), \\ \xi_{(3)}^\mu &= (0, 0, 0, 1).\end{aligned}\tag{32}$$

The symmetry constraints for the scale function and the metric tensor are

$$\xi_{(i)}^\mu \partial_\mu \phi = 0 \quad \text{and} \quad \xi_{(i)}^\alpha \partial_\alpha g_{\mu\nu} + \partial_\mu \xi_{(i)}^\alpha g_{\alpha\nu} + \partial_\nu \xi_{(i)}^\alpha g_{\mu\alpha} = 0.\tag{33}$$

This yields the expression

$$ds^2 = \phi^2(t, r) [g_{00}(t, r) dt^2 + 2g_{01}(t, r) dt dr + g_{11}(t, r) dr^2 + g_{22}(t, r) d\Omega^2],$$

and, by performing convenient transformations, it is reduced to

$$ds^2 = \phi^2(t, r) [A(t, r) dt^2 - B(t, r) dr^2 - r^2 (d\theta^2 + \sin^2 \theta \varphi^2)].\tag{34}$$

Explicit Equations

Write the undetermined functions in exponential form

$$\phi(t, r) = e^{\gamma(t, r)}, \quad A(t, r) = e^{\alpha(t, r)}, \quad B(t, r) = e^{\beta(t, r)}, \quad (35)$$

and use Cartan's procedure. The resulting equations are:

$$\frac{1}{r^2} + (3\dot{\gamma}^2 + 2\dot{\gamma}\dot{\beta}) e^{-2\alpha} - \left(2\gamma'' + \gamma'^2 - 2\gamma'\beta' + \frac{4\gamma'}{r} - \frac{2\beta'}{r} + \frac{1}{r^2}\right) e^{-2\beta} = 0,$$

$$-2 \left(\dot{\gamma}' - \dot{\gamma}\alpha' - \gamma'\dot{\beta} - \gamma'\dot{\gamma} - \frac{\dot{\beta}}{r} \right) e^{-\alpha-\beta} = 0,$$

$$\frac{1}{r^2} + (2\ddot{\gamma} + \dot{\gamma}^2 - 2\dot{\gamma}\dot{\alpha}) e^{-2\alpha} - \left(3\gamma'^2 + 2\gamma'\alpha' + \frac{4\gamma'}{r} + \frac{2\alpha'}{r} + \frac{1}{r^2}\right) e^{-2\beta} = 0,$$

$$(\ddot{\beta} + 2\ddot{\gamma} + \dot{\beta}^2 + \dot{\gamma}^2 + 2\dot{\gamma}\dot{\beta} - 2\dot{\gamma}\dot{\alpha} - \dot{\alpha}\dot{\beta}) e^{-2\alpha}$$

$$- \left(\alpha'' + 2\gamma'' + \alpha'^2 + \gamma'^2 + 2\gamma'\alpha' - 2\gamma'\beta' - \alpha'\beta' + \frac{2\gamma'}{r} + \frac{\alpha'}{r} - \frac{\beta'}{r} \right) e^{-2\beta} = 0.$$

Vacuum Solution

The general vacuum solution is

$$ds^2 = \left(1 - \frac{a}{r\phi}\right) dt^2 - \frac{(r\phi)^{'}^2}{\left(1 - \frac{a}{r\phi}\right)} dr^2 - r^2\phi^2 (d\theta^2 + \sin^2\theta d\varphi^2). \quad (36)$$

where $\phi = \phi(r)$ is arbitrary. Use this gauge freedom to obtain a Schwarzschild-type solution, i.e. such that $A(r) = 1/B(r)$. This yields

$$ds^2 = \phi^2(r) \left[\mu(r) dt^2 - \frac{dr^2}{\mu(r)} - r^2 (d\theta^2 + \sin^2\theta d\varphi^2) \right], \quad (37)$$

where

$$\phi(r) = \left(1 - \frac{r}{r_L}\right)^{-1} \quad \text{and} \quad \mu(r) = \left(1 - \frac{r}{r_L}\right)^2 \left(1 - \frac{a}{r} + \frac{a}{r_L}\right) = \left(1 - \frac{r}{r_L}\right)^2 \frac{1 - \frac{r_S}{r}}{1 - \frac{r_S}{r_L}}.$$

Note that the exact Schwarzschild form can be obtained through the transformation

$$\tilde{r} = r\phi(r). \quad (38)$$

but also as the particular case of Eq. (37) in the limit $r_L \rightarrow \infty$. Therefore, the parameter r_S may be consistently regarded as the natural generalization of the Schwarzschild radius.

If the line element (37) is interpreted as an exterior solution, the function $\mu(r)$ must remain positive, which holds for $r_S < r$. Additionally, $\tilde{r} > 0$ implies $r < r_L$. Cosmological observations indicate the existence of structures on extremely large scales, implying that spacetime is either infinite or bounded by a value of r_L far beyond the currently observed scales. The latter scenario is mathematically plausible, provided that cosmological observations occur in a range $r_S \ll r \ll r_L$ —a limit where the coordinates r and \tilde{r} are practically indistinguishable. Because of the significant implications, expression (37) is worthy of attention, and it will be referred to as the *Lyra-Schwarzschild* line element.

Correction to Newtonian Gravity

In order to calculate the effective Newtonian potential, Taylor-expand the functions ϕ and μ in the regime $r_S \ll r \ll r_L$. To second order, this computation produces the equation of motion

$$\frac{d^2 r}{dt^2} = -\frac{m_G}{r^2} + \frac{3m_G}{r_L^2} \left(1 - \frac{r_S}{r_L}\right) - \frac{3r}{r_L^2}, \quad (39)$$

where m_G is the geometric mass:

$$m_G = \frac{\bar{r}_S}{2} = \frac{r_S}{2 \left(1 - \frac{r_S}{r_L}\right)} \approx \frac{r_S}{2} \left(1 + \frac{r_S}{r_L}\right), \quad (40)$$

Eq. (39) shows that, in LyST geometry, the geometric mass—acting as the primary effective gravitational source—depends on both r_S and r_L . Moreover, the second-order corrections give rise to a constant repulsive acceleration and a linear term in r , analogous to an anti-de Sitter contribution.

Finally, the equation of motion in the Newtonian limit for a Schwarzschild spacetime with cosmological constant Λ reads

$$\frac{d^2 r}{dt^2} = -\frac{m_G}{r^2} + \frac{\Lambda r}{3}. \quad (41)$$

By comparing Eqs. (39) and (41) when $r_S \ll r$, one finds that the cosmological constant is related to the Lyra radius through

$$\Lambda \approx -\frac{9}{r_L^2}, \quad (42)$$

showing that the spacetime behaves as in anti-de Sitter geometry $r_S \ll r \ll r_L$. These results indicate that LyST geometry naturally reproduces the expected Schwarzschild behavior at short distances while introducing a well-defined large-distance modification that becomes relevant only near the geometric boundary set by r_L .

- 1 Introduction
- 2 The Lyra Spacetime
- 3 Lyra Scalar-Tensor Gravity
- 4 Spherically Symmetric Solution
- 5 Free Particle Motion
 - Massive Particles
 - Photons
- 6 Conclusions

The Hamilton-Jacobi Approach

The Lagrangian and Hamiltonian of a free particle in LyST theory are given by

$$L(x, \dot{x}, \lambda) = \frac{1}{2} m \phi^2 g_{\mu\nu} \dot{x}^\mu \dot{x}^\nu, \quad \text{and} \quad H(x, p, \lambda) = \frac{1}{2m\phi^2} g^{\mu\nu} p_\mu p_\nu, \quad (43)$$

where m is the rest mass, $\dot{x}^\mu = dx^\mu/d\lambda$ are the velocities, and $p_\mu = \partial L/\partial \dot{x}^\mu$ are the canonical conjugate momenta. If λ is an affine parameter,

$$\phi^2 g_{\mu\nu} \dot{x}^\mu \dot{x}^\nu = \varepsilon = \begin{cases} 1, & \text{massive particles;} \\ 0, & \text{photons.} \end{cases} \quad (44)$$

The Hamilton principal function $S(x, P, \lambda)$ generates a canonical transformation from the coordinates (x, p) to the new coordinates (X, P) , where X^μ and P_μ are constants. The canonical relations are given by

$$p_\mu = \frac{\partial S(x, P, \lambda)}{\partial x^\mu} \quad \text{and} \quad X^\mu = \frac{\partial S(x, P, \lambda)}{\partial P_\mu}. \quad (45)$$

The evolution of the system is governed by the Hamilton-Jacobi equation:

$$H\left(x, \frac{\partial S}{\partial x}, \lambda\right) + \frac{\partial S}{\partial \lambda} = 0. \quad (46)$$

The general solution of (46) is:

$$S = -\frac{\varepsilon m \lambda}{2} + Et - \ell \varphi \pm \int dr \sqrt{\frac{E^2}{\mu^2} - \frac{\varepsilon m^2 \phi^2}{\mu} - \frac{\ell^2}{\mu r^2}}, \quad (47)$$

Here, the coordinate θ does not appear, as the motion is confined to a plane passing through the origin, which can be chosen such that $\theta = \frac{\pi}{2}$. Now, by replacing S in the second relation of (45), one obtains:

$$t = \pm k \int \frac{dr}{\mu \sqrt{k^2 - \varepsilon \mu \phi^2 - \frac{h^2 \mu}{r^2}}}, \quad (48a)$$

$$\lambda = \pm \int \frac{\phi^2 dr}{\sqrt{k^2 - \varepsilon \mu \phi^2 - \frac{h^2 \mu}{r^2}}}, \quad (48b)$$

$$\varphi = \pm h \int \frac{dr}{r^2 \sqrt{k^2 - \varepsilon \mu \phi^2 - \frac{h^2 \mu}{r^2}}}, \quad (48c)$$

where $k = E/m$ and $h = \ell/m$ are the specific energy and the specific angular momentum.

- 1 Introduction
- 2 The Lyra Spacetime
- 3 Lyra Scalar-Tensor Gravity
- 4 Spherically Symmetric Solution
- 5 Free Particle Motion
Massive Particles
Photons
- 6 Conclusions

Massive Particles

For massive particles, $\varepsilon = 1$ and $\lambda = \tau$ is the proper time. From (48a):

$$\mathcal{E} = \frac{1}{2}\dot{r}^2 + V_{\text{eff}} = \frac{1}{2}\phi^4 r^2 + V_{\text{eff}}, \quad (49)$$

where $\mathcal{E} = (k^2 - 1)/2$. Here, the quantity V_{eff} is the effective potential

$$V_{\text{eff}} := -\frac{m_G}{\tilde{r}} + \frac{h^2}{2\tilde{r}^2} - \frac{m_G h^2}{\tilde{r}^3} \quad (50)$$

$$= -\frac{m_G}{r} \left(1 - \frac{r}{r_L}\right) + \frac{h^2}{2r^2} \left(1 - \frac{r}{r_L}\right)^2 - \frac{m_G h^2}{r^3} \left(1 - \frac{r}{r_L}\right)^3. \quad (51)$$

Moreover, from (48c), one obtains:

$$\frac{d^2\tilde{u}}{d\varphi^2} = -\frac{1}{h^2} \frac{dV_{\text{eff}}}{d\tilde{u}} = \frac{m_G}{h^2} - \tilde{u} + 3m_G\tilde{u}^2, \quad (52)$$

whose solution for $\tilde{u} = 1/\tilde{r}$ is the standard Schwarzschild result.

Furthermore, the solution for $u = 1/r$ follows from $u = \tilde{u} + u_L$, with $u_L = 1/r_L$.

The different types of motion can be determined by analyzing the behavior of the effective potential as a function of the parameters ℓ and m_G . To this end, it is necessary to examine the first and second derivatives of the effective potential:

$$\frac{dV_{\text{eff}}}{dr} = \frac{d\tilde{r}}{dr} \frac{dV_{\text{eff}}}{d\tilde{r}} = \phi^2 \frac{dV_{\text{eff}}}{d\tilde{r}}, \quad (53)$$

$$\frac{d^2V_{\text{eff}}}{dr^2} = \frac{d^2\tilde{r}}{dr^2} \frac{dV_{\text{eff}}}{d\tilde{r}} + \left(\frac{d\tilde{r}}{dr} \right)^2 \frac{d^2V_{\text{eff}}}{d\tilde{r}^2} = \frac{2\phi^3}{r_L} \frac{dV_{\text{eff}}}{d\tilde{r}} + \phi^4 \frac{d^2V_{\text{eff}}}{d\tilde{r}^2}. \quad (54)$$

Since $\phi \neq 0$, the number of critical points is the same in both coordinate systems,

$$\left(\frac{dV_{\text{eff}}}{dr} \right)_{r_{\text{crit}}} = \left(\frac{dV_{\text{eff}}}{d\tilde{r}} \right)_{\tilde{r}_{\text{crit}}} = 0, \quad (55)$$

as well as their stability,

$$\text{sgn} \left(\frac{d^2V_{\text{eff}}}{dr^2} \right)_{r_{\text{crit}}} = \text{sgn} \left(\frac{d^2V_{\text{eff}}}{d\tilde{r}^2} \right)_{\tilde{r}_{\text{crit}}}. \quad (56)$$

From Eq. (55), the critical points are given by

$$r_{\pm} = 6m_G \left[\left(1 + \frac{6m_G}{r_L} \right) \mp \sqrt{1 - \frac{12m_G^2}{h^2}} \right]^{-1}. \quad (57)$$

- $h^2 < 12m_G^2$: No critical points.
- $h^2 = 12m_G^2$: One inflection point at $r_{inf} \equiv 6m_G \left(1 + \frac{6m_G}{r_L} \right)^{-1}$.
- $h^2 > 12m_G^2$: Two equilibrium points: r_+ (stable) and r_- (unstable).

On the other hand, the roots of the effective potential are given by

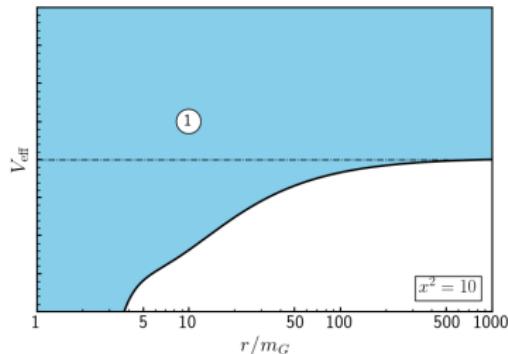
$$R_{\pm} = 4m_G \left[\left(1 + \frac{4m_G}{r_L} \right) \mp \sqrt{1 - \frac{16m_G^2}{h^2}} \right]^{-1}. \quad (58)$$

- $h^2 < 16m_G^2$: No real roots.
- $h^2 = 16m_G^2$: One root, given by $R_0 \equiv 4m_G \left(1 + \frac{4m_G}{r_L} \right)^{-1}$.
- $h^2 > 16m_G^2$: Two different roots.

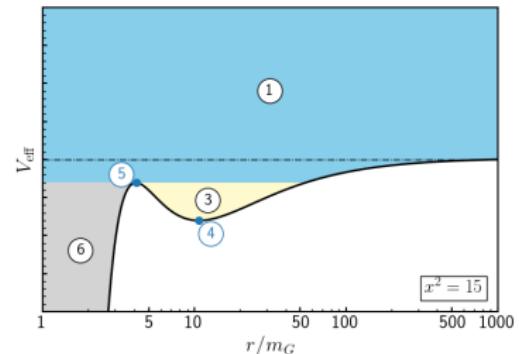
In addition, the following asymptotic behavior is observed:

$$V_{\text{eff}}(\tilde{r} \rightarrow \infty) \equiv V_{\text{eff}}(r \rightarrow r_L) \rightarrow 0^-, \quad (59)$$

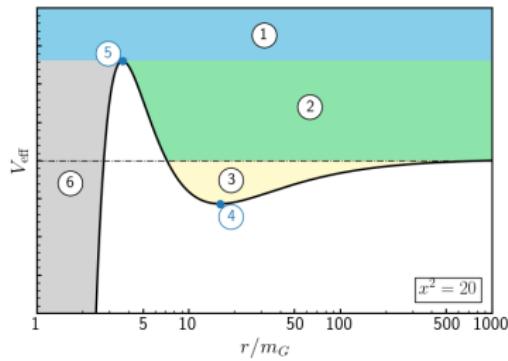
$$V_{\text{eff}}(\tilde{r} \rightarrow 0) \equiv V_{\text{eff}}(r \rightarrow 0) \rightarrow -\infty. \quad (60)$$



(a)



(b)



(c)

- ① Gravitational capture
 - ② Hyperbolic orbit
 - ③ Bound orbit
 - ④ Stable circular orbit
 - ⑤ Unstable circular orbit
 - ⑥ Motion near the horizon

Figure 1:

- 1 Introduction
- 2 The Lyra Spacetime
- 3 Lyra Scalar-Tensor Gravity
- 4 Spherically Symmetric Solution
- 5 Free Particle Motion
 - Massive Particles
 - Photons
- 6 Conclusions

In the case of photons, $\varepsilon = 0$, and we cannot define proper time. From (48b):

$$\frac{m_G^2}{b^2} = \frac{m_G^2}{h^2} \phi^4 \dot{r}^2 + V_{\text{eff}}, \quad (61)$$

where $b = h/k$. Here, the effective potential is identified as:

$$V_{\text{eff}} := \frac{m_G^2}{\tilde{r}^2} \left(1 - \frac{2m_G}{\tilde{r}} \right) \quad (62)$$

$$= \frac{m_G^2}{r^2} \left(1 - \frac{r}{r_L} \right)^2 \left(1 - \frac{2m_G}{r} + \frac{2m_G}{r_L} \right). \quad (63)$$

Once again, from (48c), one obtains:

$$\frac{d^2 \tilde{u}}{d\varphi^2} = -\frac{1}{2m_G^2} \frac{dV_{\text{eff}}}{d\tilde{u}} = -\tilde{u} + 3m_G \tilde{u}^2, \quad (64)$$

whose solution for $\tilde{u} = 1/\tilde{r}$ is the standard Schwarzschild result and $u = \tilde{u} + u_L$.

In this case, there is only one critical point:

$$\tilde{r}_c = 3m_G \quad \text{or} \quad r_c = \frac{3m_G}{1 + \frac{3m_G}{r_L}}, \quad (65)$$

which is an unstable equilibrium point, giving the maximum value for the potential:

$$V_{\text{eff}}^{\max} = V_{\text{eff}}(r_c) = \frac{1}{27}. \quad (66)$$

On the other hand, there is also only one root of the effective potential, which is precisely the Schwarzschild radius:

$$\tilde{r}_S = 2m_G \quad \text{or} \quad r_S = \frac{2m_G}{1 + \frac{2m_G}{r_L}}. \quad (67)$$

Moreover, the following asymptotic behavior is observed:

$$V_{\text{eff}}(\tilde{r} \rightarrow \infty) \equiv V_{\text{eff}}(r \rightarrow r_L) \rightarrow 0^+, \quad (68)$$

$$V_{\text{eff}}(\tilde{r} \rightarrow 0) \equiv V_{\text{eff}}(r \rightarrow 0) \rightarrow -\infty. \quad (69)$$

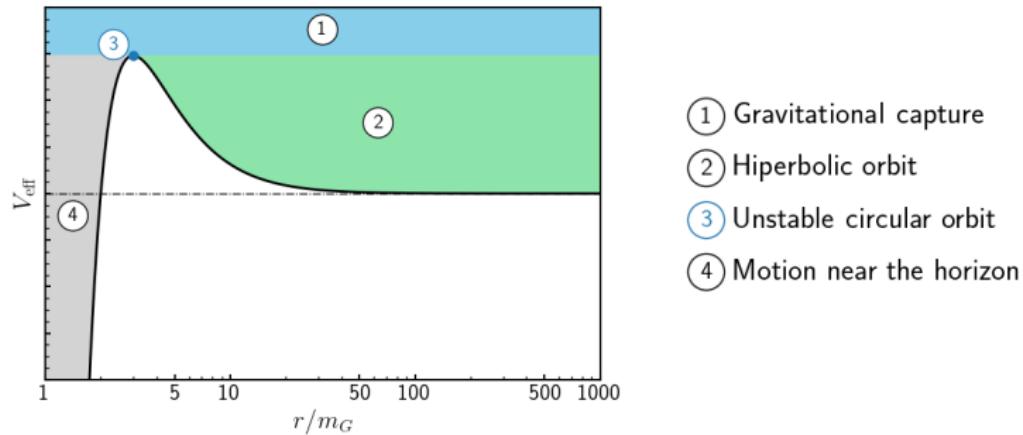


Figure 2:

Gravitational Redshift

Consider light source and an observer, both with fixed spatial coordinates $(r_E, \theta_E, \varphi_E)$ and $(r_R, \theta_R, \varphi_R)$, respectively. The source emits a pulse at time t_E and received by the observer at time t_R . Another pulse is emitted by the source at time $(t_E + \Delta t_E)$ and received by the observer at time $(t_R + \Delta t_R)$. The photons will follow null geodesics and, by choosing a parameterization λ , one can write:

$$t_R - t_E = \int_{\lambda_E}^{\lambda_R} d\lambda \mu^{-1/2} \left(-g_{ij} \frac{dx^i}{d\lambda} \frac{dx^j}{d\lambda} \right)^{1/2}. \quad (70)$$

This integral depends only on the initial and final points, so it is the same for both pulses:

$$t_R - t_E = (t_R + \Delta t_R) - (t_E + \Delta t_E) \quad \Rightarrow \quad \Delta t_E = \Delta t_R. \quad (71)$$

Now, both the source and the observer are fixed in space. So the proper time of their curves is $d\tau^2 = ds^2 = \phi^2 g_{00} dt^2$. Thus,

$$\frac{\Delta\tau_E}{\Delta\tau_R} = \frac{\sqrt{\phi^2(r_E)\mu(r_E)}\Delta t_E}{\sqrt{\phi^2(r_R)\mu(r_R)}\Delta t_R} = \sqrt{\frac{1 - \frac{2m_G}{r_E} + \frac{2m_G}{r_L}}{1 - \frac{2m_G}{r_R} + \frac{2m_G}{r_L}}}. \quad (72)$$

The gravitational redshift is defined in terms of the emission and reception wavelengths:

$$z = \frac{\lambda_R - \lambda_E}{\lambda_E}. \quad (73)$$

Here, λ represents a wavelength instead of the parameter in Eq. (70).

Wavelengths and frequencies are related through $\lambda \propto \nu^{-1} \propto \Delta\tau$. Therefore, the general form of the gravitational redshift in Lyra spacetime is:

$$z = \sqrt{\frac{1 - \frac{2m_G}{r_R} + \frac{2m_G}{r_L}}{1 - \frac{2m_G}{r_E} + \frac{2m_G}{r_L}}} - 1. \quad (74)$$

In particular, when the light source and the observer are far away from the gravitational source, such that $r_E, r_R \gg r_s$, expression (74) simplifies to

$$z \approx \frac{m_G}{r_E} \left(1 - \frac{r_E}{r_R}\right). \quad (75)$$

Redshift, properly speaking, occurs when $r_E > r_R$, while blueshift occurs in the opposite case. This remains true for the general expression (74).

The radial motion ($h = 0$) for photons is determined by Eq. (48a), whose solution is given by

$$t_{\pm} = \tau \pm \left[\frac{r}{1 - \frac{r}{r_L}} + 2m_G \ln \left(\frac{r}{1 - \frac{r}{r_L}} - 2m_G \right) \right], \quad (76)$$

where τ is an integration constant. Note that this expression diverges for $r = r_S$ and $r = r_L$. However, the only physical singularity is $r = 0$, as one can verify from the expression of the Kretschmann scalar:

$$K = \frac{48m_G^2}{\tilde{r}^6} = \frac{12r_S^2}{r^6} \frac{\left(1 - \frac{r}{r_L}\right)^6}{\left(1 - \frac{r_S}{r_L}\right)^2}. \quad (77)$$

Therefore, $r = r_S$ and $r = r_L$ are just coordinate singularities, as shown in Figure 3.

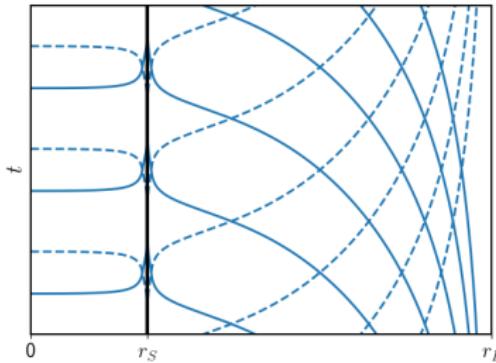


Figure 3:

In this figure continuous lines represent ingoing photons and dashed lines represent outgoing photons. The singularity $r = r_S$ can be removed in a similar way to the Schwarzschild case. Meanwhile, the singularity $r = r_L$ is a consequence of the transformation $\tilde{r} = r\phi(r)$. This makes sense when considering that $r = r_L$ corresponds to $\tilde{r} = \infty$, which is neither a physical singularity nor a physical place.

1 Introduction

2 The Lyra Spacetime

3 Lyra Scalar-Tensor Gravity

4 Spherically Symmetric Solution

5 Free Particle Motion

6 Conclusions

Lyra Scalar-Tensor gravity (LyST) is formulated on a Lyra manifold with a torsion-free, metric-compatible connection. The fundamental dynamical fields are the metric $g_{\mu\nu}$ and the scale function ϕ , making LyST a natural extension of General Relativity with an additional geometrical degree of freedom.

The theory:

- Proves Birkhoff theorem under certain considerations on the scale function.
- Recovers Newtonian gravity in the weak-field and static limit.
- Subleading corrections introduce repulsive and anti-de Sitter-like effects, potentially relevant at very large scales.
- Some astronomical uncertainties allow lower bounds of the order $r_L \gtrsim 10^{21} \text{m}$.

The most general spherically symmetric solution depends on a free scale function, but it is physically equivalent to the Schwarzschild solution via the coordinate transformation $\tilde{r} = r \phi(r)$.

Thanks For Your Attention!