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0 Introduction




Scalar-Tensor Theories and Lyra Geometry

A natural extension of GR consists of scalar-tensor theories, where a scalar
degree of freedom complements the metric field. Well-known examples
include Kaluza—Klein and Brans-Dicke theories.

In this context, Lyra proposed a generalization of Riemannian geometry by
introducing a scale function ¢ into the definition of the reference frame. Lyra
geometry enlarges spacetime transformations to include both diffeomorphisms
and scale transformations, modifying the notions of connection, curvature,
and geodesics.
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Lyra Scalar-Tensor Gravity

Early formulations of Lyra gravity suffered from conceptual and variational
inconsistencies or reduced to known scalar-tensor models. Recently, a
consistent scalar-tensor theory on Lyra’s manifold (Lyra Scalar-Tensor gravity,
LyST) was constructed from symmetry principles.

In this work, we:
® Derive the field equations from a well-defined action.
® Construct the spherically symmetric (Lyra-Schwarzschild) solution.

® Study massive and massless particle motion via the Hamilton-Jacobi
formalism.
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Lyra Manifolds

Let M be a topological manifold, then:

® A Lyra reference system (LRS) is a triple (U, x, ®), where (U, x) is a chart
of the manifold and ® : &/ — R* is a continuous map, called scale map.
Here, R* denotes the set of all positive real numbers.

® A Lyra atlas is a collection of Lyra reference systems,
A = {(Ua; Xa, Pa)}aci, that covers M.

® The collection A is said to be a smooth Lyra atlas if any two Lyra
reference systems in A are smoothly compatible and scale maps are
smooth.

® The maximal extension of a smooth Lyra atlas A is the collection of all
Lyra reference systems smoothly compatible with every element of A.
This is called a maximal smooth Lyra atlas.

® A smooth Lyra manifold of dimension n is a pair (M, .A), where M is an
n-dimensional topological manifold and .A is a maximal smooth Lyra
atlas on M.
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Tensors

Given a LRS (U, x, ®), the associated Lyra vector basis and its dual are
defined, respectively, as

N

The commutation of these vectors, [e,, e,] = 7", ex, determines the
corresponding structure coefficients:

Vi = 60,006 — 6,0u0). ©)
The transformation rules for base vectors and covectors are given by

¢ (x) Ox” b O(R)OR

sz © T E T on @

ey — &, =

This implies the following transformation rule for tensor field components:

_ H(x r=s M1 Hr B1 Bs
Fraa () = (¢(x)) (3)( o ox 8)f 8): ) Torar ),
s @(x) Ox*1  9xr 9x1 Oxvs Ba--Bs
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Geometric Structure

The metric tensor is introduced as a non-degenerate symmetric tensor field
g:[(TM)xT(TM) — CZ(M). @
The line element in a Lyra basis is written as:
ds® = ¢*g,. dx"dx” 5)

From here, one obtains the geodesic equation:

d?xt . dx* dx”? " " v dx® dx”
e {aﬁ}??"‘((savﬁgﬁ"’_dﬁvagﬁ_gaﬂg qus)wﬁ =0, (6)
and the volume element:
dV = ¢"(x)4/|det(g)| d"x. 7
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Affine structure

A connection V is defined in the usual way as an operator acting upon two
vector fields. Then, one of the entries is extended to tensor fields, thus giving
the covariant derivative:

1 . p1ep
VT =T L,
K1 AT Hr H1O
+ T vpoewy T AT \T Vyeevs
o 115 RNy o JIEREyT)
=7, T Ty — =7, T "ppeo (8)
Here,

B o pap
VAT s = (Ve T) "aw

s

and M v are the connection coefficients, which fully determine the connection.
The auto-parallel curve equation is:

d?xH " " dx® dx? B
reals (oM 5 + 06V 50) el 0. 9
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Torsion:
@ @ et fet
Ty = r v r py v pve

N
Curvature:
Raﬁuu = e#ragl, + FQANFA5V — eyraﬂu — r&/\yr)‘ﬁu — raﬁkq/)‘w.
First Bianchi identity:
[ [ [eY A
R0 = V8T ) + T BT -
Second Bianchi identity:
[ Lo A
R™slvip) T R galpT w) = 0.
Non-metricity tensor:
Ma/,uJ - vag,u,u - v,ugoa/ - Vug/,ul-
General expression for the connection coefficients:
A —1( 1 5o
r pv — ()b {y.u} + Eg (’YI»LOLV + Yvap — 'Va,u,u)

1

2

1
MAHV + nga(Tuau + Tvap — Tauu)~
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LyST Connection

Some preliminary considerations:
® Equivalence between geodesic curves and auto-parallel curves.
® Existence of a generalized divergence theorem on Lyra manifolds.
® Preservation of the scalar product of parallel transported vector fields.
® Absence of spin sources or fermionic matter fields.
This leads to
Viguw =0 and 7%, =0. (16)

Then, the expression of the connection coefficients reduces to
Mop =6 s} + 67 (05 Va0 — g2sV"0). 17

From here on, the connection will be assumed to have this form, and it will be
referred to as the LyST connection.
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Curvature in the LyST Connection

Curvature:

Raﬁ,uu = ¢72Ra6uu + ¢72 (5zgﬁv - 63gﬁu)v/\¢V)\¢
+¢ H(O0VuVsd — 6uV V50 + g5,V V6 — 5.V, V0). (18)

Ricci tensor:

Rsy = ¢ *Rav + (n—1)¢ g5,V ¢V
—(n=2)¢ 'V, Vss— ¢ 'gs, V' Vs (19)

Ricci scalar:
R=¢ R+ n(n—1)¢ 2V ¢Vad —2(n—1)¢ 'V V,o. (20)
Simmetries:

RaB,u,u = —Rapvu, R&B[,LV = _RBOL;LLM RaB,u,u - R,u,uaﬁ- (21)
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Minimal Coupling Prescription

Given a matter field v, in a Minkowski background with metric 7., the
corresponding lagrangian density is extended to a Lyra spacetime through the
substitution

ﬁl\/l (n[,tllyway aawa) — ﬁl\/l (guuyway Vawa)‘ (22)

Here, the scale function ¢ is naturally incorporated through the connection,
ensuring that the resulting Lagrangian density remains invariant under
general Lyra transformations.

The stationary-action principle §Sy = 0, with the boundary condition d+), = 0,
leads to the Euler-Lagrange field equations for the matter field:

OLwm 0Lm

a0~ Vigv g =0 (23)
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Field Equations

The gravitational action in a four-dimensional Lyra spacetime is taken to be

Se = i / d*x ¢*\/[det(2)|R, (24)
1%

The gravitational field equations follow from ¢S = 0 under variations of g,
and ¢, with dg.., d¢ and §V ¢ vanishing on the boundary oV.

The resulting equations are

Ruv — %ng =kTuw and R=kM, (25)
where oL
Tow = =25 55+ gL (26)
and
M= —4Ly + ;chqsv“qs -9 (68%” ~V, ;VE:”¢) . 27)

Note that there is a constraint:

M=-T. (28)
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Newtonian Limit

Consider:
® Non-relativistic velocities: |dd—xt'| < 1
e Static fields: dogu = 0 and do¢p = 0.

® Weak fields: guv ~ 1w + hu and ¢ = 1 + 6¢, with |h, | < 1 and
[0¢] < 1.

The resulting equation of motion is

% ~ VU, (29)

and the gravitational field equation reduces to
VzUwgp —  k=8n (30)

where U is the effective Newtonian potential:

1
U = Zhoo + 5¢. (31)
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Spherical Symmetry

In spherical coordinates, the corresponding Killing vectors are

551) = (0,0, —sinp, — cot f cos ),
Eél«z) = (07 07 Cos p, — cot @ sin SD)’ (32)
& = (0,0,0,1).

The symmetry constraints for the scale function and the metric tensor are
§houd =0 and  £G30agur + 0u&(i)8av + OvE(i)8ua = 0. (33)
This yields the expression
ds® = ¢*(t,r) [goo(t, r) dt® + 2go1(t, r) dtdr + gu1(t, r) dr® + goo(t, r) dﬂz} ,
and, by performing convenient transformations, it is reduced to

ds® = ¢?(t,r)[A(t,r) dt® — B(t,r) dr* — r* (d6® +sin® 0 %) |. (34)
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Explicit Equations

Write the undetermined functions in exponential form
o(t,r) =", A(t,r) =), B(t,r) = "7, (35)

and use Cartan’s procedure. The resulting equations are:

1 . 4~/ 23’
= + (3,-}/2 +2'.Y/B) e 2o _ (2,}/// _,'_,\/2 N ~Y /8 2) e—28 — ,
r r r

-2 <7" — o' =B —~'% - f) e F=o,

1 ~' 2 1
72_’_(25,_’_#2_2&@)6 20 (37/2_‘_27/0/_’_ +i+72) 28 _
r r

(B+29 + 8% +4% + 296 — 29& — ap)e 2

2~/ / ’
7(a”+2’y”+al2+’yl2+2’yla/72’ylﬁ/70/ﬂl+l+i7£) e 28 _ 0.
r r r

child Spacetime

Spherically Symmetric Solution



Vacuum Solution

The general vacuum solution is

d52:(1—i) S ()

re

-3

dr* — r*¢? (d6? +sin® 0 dy?) .

where ¢ = ¢(r) is arbitrary. Use this gauge freedom to obtain a

Schwarzschild-type solution, i.e. such that A(r) = 1/B(r). This yields

2 _ 420, , 2_d7r2
ds—as()[u()dt e

— r? (d6? + sin® odwz)} ,
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Note that the exact Schwarzschild form can be obtained through the
transformation

F=ro(r). (38)

but also as the particular case of Eq. (37) in the limit r, — oo. Therefore, the
parameter rs may be consistently regarded as the natural generalization of the
Schwarzschild radius.

If the line element (37) is interpreted as an exterior solution, the function p(r)
must remain positive, which holds for rs < r. Additionally, 7 > 0 implies

r < r.. Cosmological observations indicate the existence of structures on
extremely large scales, implying that spacetime is either infinite or bounded
by a value of r; far beyond the currently observed scales. The latter scenario is
mathematically plausible, provided that cosmological observations occur in a
range rs < r < r,—a limit where the coordinates r and 7 are practically
indistinguishable. Because of the significant implications, expression (37) is
worthy of attention, and it will be referred to as the Lyra-Schwarzschild line
element.
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Correction to Newtonian Gravity

In order to calculate the effective Newtonian potential, Taylor-expand the
functions ¢ and y in the regime rs < r < r;. To second order, this
computation produces the equation of motion

d?r mg 3mg rs 3r
— = 1-=2)-= 3
dt2 r2 + r? n rg’ (39

where mg is the geometric mass:

2(1—i5)
r

Eq. (39) shows that, in LyST geometry, the geometric mass—acting as the
primary effective gravitational source—depends on both rs and r,. Moreover,
the second-order corrections give rise to a constant repulsive acceleration and
a linear term in r, analogous to an anti—de Sitter contribution.
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Finally, the equation of motion in the Newtonian limit for a Schwarzschild
spacetime with cosmological constant A reads

=4 41)

By comparing Egs. (39) and (41) when rs < r, one finds that the
cosmological constant is related to the Lyra radius through

9

—=,
N

A= (42)

showing that the spacetime behaves as in anti-de Sitter geometry rs < r < ri.
These results indicate that LyST geometry naturally reproduces the expected
Schwarzschild behavior at short distances while introducing a well-defined
large-distance modification that becomes relevant only near the geometric
boundary set by r;.
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The Hamilton-Jacobi Approach

The Lagrangian and Hamiltonian of a free particle in LyST theory are given by

1
L(X7 ).(7 )‘) = Emd)zgl.tv)-(#)-(l/: and H(X7 p7 A) = g/’“/p;l«plly (43)

2ma¢?

where m is the rest mass, x* = dx*/d\ are the velocities, and p, = dL/0x"
are the canonical conjugate momenta. If ) is an affine parameter,

1, massive particles; (44)

2 T
XX = e =
9 8uv {0, photons.

The Hamilton principal function S(x, P, \) generates a canonical
transformation from the coordinates (x, p) to the new coordinates (X, P),
where X* and P, are constants. The canonical relations are given by

L OSEP) e OS(P)

45
DxH oP, )

The evolution of the system is governed by the Hamilton-Jacobi equation:

8 S
Hix, 22)+2 —o. 6
(X’ax’ )+a,\ (46)

Free Particle Motion child Spacetime



The general solution of (46) is:

E2 242 2
S—am)\—i—Et—ng:I:/dr\/—smd)—g 47)
2 u?

Here, the coordinate 6 does not appear, as the motion is confined to a plane
passing through the origin, which can be chosen such that § = 5. Now, by
replacing S in the second relation of (45), one obtains:

t = +k dr , (48a)
2 2 hp
pf k* —epg? — —-
-
2
d
A=+ ¢ dr , (48b)

@ ==kh / I P (48¢)
2y k2 — epg? — TM
\/ ;

where k = E/m and h = ¢/m are the specific energy and the specific angular
momentum.
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Massive Particles

For massive particles, e = 1 and A = 7 is the proper time. From (48a):
1., 1 4.
E= 5!’ + Vegs = E(b <+ Vg, (49)

where £ = (k2 — 1)/2. Here, the quantity Vi is the effective potential

mg h? mg h?
Vi i= —— _— =
eff Fawr T R

h2 2 h2 3
_me (Y P omeR (Y
r r 2r2 rn r3 rn

Moreover, from (48c), one obtains:

(50)

d?i 1 dVeg mg 5
—_ = =5 §43mei 52
42~ R di e LhImet 62

whose solution for i = 1/F is the standard Schwarzschild result.
Furthermore, the solution for u = 1/r follows from u = i+ u;, with u, = 1/r;.
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The different types of motion can be determined by analyzing the behavior of
the effective potential as a function of the parameters ¢ and mg. To this end, it
is necessary to examine the first and second derivatives of the effective
potential:

dVess _ dFdVesr _ 2 dVegs
dr ~ dr dF =9 df’ (53)
2y, 2F dV, F\? d*Ver _ 2¢° dV, 2V,
d 2eff :LZrd eff dF\“ d ~2eff _2¢°d iff+¢4d ~2eff. (54)
dr dr? dFf dr dr rndf dr
Since ¢ # 0, the number of critical points is the same in both coordinate
systems,
dVeg [ dVeg .
( dr )’cn‘r - ( df >;crit - O’ (55)
as well as their stability,
d2 Veff d2 Veff
sgn < a2 = sgn ar ). 't . (56)
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From Eq. (55), the critical points are given by
-1

(567)

6m 12m?2
ry = 6mg (1+TG) + h2G

® h? < 12mZ: No critical points.
-1
® h? = 12m?Z: One inflection point at rj,r = 6mg (1 + Gr%) .
° p2> 12m%’-: Two equilibrium points: ry (stable) and r_ (unstable).
On the other hand, the roots of the effective potential are given by
-1

(58)

4 16m?2
Ry = 4mg (1+ﬂ):p 1 G
re h2
® h? < 16m?%: No real roots.
-1
® h? = 16mZ: One root, given by Ry = 4mg (1 + %) .

® h? > 16m?Z: Two different roots.
In addition, the following asymptotic behavior is observed:

Ve (F — 00) = Vege(r = ) — 07, (59)

Veff(F — 0) = Veff(r — 0) — —OQ. (60)
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Photons
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In the case of photons, ¢ = 0, and we cannot define proper time. From (48b):

m2 m2
£ = T§¢4f2 + Verr, (61)

b2

where b = h/k. Here, the effective potential is identified as:

m2 2
Vetr 1= —2 (1 - ﬂ) (62)
r r
2 2
_E(;[,L) (1,2m6+2ﬂ). (63)
r2 r r r
Once again, from (48c), one obtains:
d?ii 1 dVeg 5
= = —ii + 3mgi?, 64
d2 ~ 2mZ da - tomed e

whose solution for i = 1/7 is the standard Schwarzschild result and

u=10a+ u.
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In this case, there is only one critical point:

Fo=3mc or  ro—= L;jn (65)
1+

G
o

which is an unstable equilibrium point, giving the maximum value for the
potential:

Ve’gax = eff(rC) = (66)

277 .
On the other hand, there is also only one root of the effective potential, which
is precisely the Schwarzschild radius:

2m<;

Fs = 2mg or rs = @ (67)
Moreover, the following asymptotic behavior is observed:

Vet(F — 00) = Vigg(r — r) = 07, (68)

Veet(F — 0) = Vegr(r —» 0) > —c0. (69)
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Gravitational Redshift

Consider light source and an observer, both with fixed spatial coordinates

(re, 0, pe) and (rr, Or, pr), respectively. The source emits a pulse at time t¢
and received by the observer at time tg. Another pulse is emitted by the
source at time (tz + Atg) and received by the observer at time (tg + Atg).
The photons will follow null geodesics and, by choosing a parameterization \,
one can write:

AR dxi dxd \ M2
tg — tg = dapt/? (— i —) : 70
R — tE //\ i M i gy (70)
This integral depends only on the initial and final points, so it is the same for
both pulses:
tr — tg = (tR + AtR) — (tE + AtE) = Ate = Atg. (71)

Now, both the source and the observer are fixed in space. So the proper time
of their curves is d72 = ds? = ¢*goo dt?. Thus,

Are _ /$*(re)ulre)Ate

AR /92 (rr)u(rr) Atr

(72)
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The gravitational redshift is defined in terms of the emission and reception
wavelengths:
S AR — A£
v
Here, ) represents a wavelength instead of the parameter in Eq. (70).

Wavelengths and frequencies are related through A o< v~ o Ar. Therefore,
the general form of the gravitational redshift in Lyra spacetime is:

(73)

L 74)

o

In particular, when the light source and the observer are far away from the
gravitational source, such that rg, rg > rs, expression (74) simplifies to

sz(lfr—E). (75)
re rr

Redshift, properly speaking, occurs when rg > rg, while blueshift occurs in the
opposite case. This remains true for the general expression (74).
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Causal Structure

The radial motion (h = 0) for photons is determined by Eq. (48a), whose

solution is given by
r,+2mcln<1rr—2mc)], (76)
n n

where 7 is an integration constant. Note that this expression diverges for
r = rs and r = r,. However, the only physical singularity is r = 0, as one can
verify from the expression of the Kretschmann scalar:

ty =7+

6
-
K — 48mz 121 ( ,L) . 77

70 r6 _rs)?
L

Therefore, r = rs and r = r; are just coordinate singularities, as shown in
Figure 3.
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Figure 3:

In this figure continuous lines represent ingoing photons and dashed lines
represent outgoing photons. The singularity r = rs can be removed in a
similar way to the Schwarzschild case. Meanwhile, the singularity r = r; is a
consequence of the transformation 7 = r¢(r). This makes sense when
considering that r = r; corresponds to 7 = oo, which is neither a physical
singularity nor a physical place.
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Final Remarks: Main Results

Lyra Scalar-Tensor gravity (LyST) is formulated on a Lyra manifold with a
torsion-free, metric-compatible connection. The fundamental dynamical fields
are the metric g, and the scale function ¢, making LyST a natural extension
of General Relativity with an additional geometrical degree of freedom.

The theory:
® Proves Birkhoff theorem under certain considerations on the scale
function.
® Recovers Newtonian gravity in the weak-field and static limit.
® Subleading corrections introduce repulsive and anti-de Sitter-like
effects, potentially relevant at very large scales.

e Some astronomical uncertainties allow lower bounds of the order
r 2 1021m.

The most general spherically symmetric solution depends on a free scale
function, but it is physically equivalent to the Schwarzschild solution via the
coordinate transformation 7 = r ¢(r).
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