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VLF signal propagation in the
D-region with LMP

The Earth’s surface and the ionosphere act as a natural
waveguide for VLF (wavelenghts ∼ 10 km - 100 km) sig-
nal propagation in the lower ionosphere. Hence, a suitable
approach is provided by Mode Theory, which takes advan-
tage of the waveguide eigenmode formulation to propagate
the electromagnetic fields throughout the waveguide.

Fig. 1: Geometrical optics picture of signal propagation as given by PHaRLAP[1].
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Fig. 2: Links NAA-PLO and NAA-PIU from the SAVNET network [2].

Inversion Framework

Two separate optimization steps were taken: the first one
to estimate the background ionosphere density and the
second one to find the solar flare-induced density pertur-
bation amplitude parameter.
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Fig. 3: Flux diagram of the algorithm developed to retrieve solar flare-induced

density perturbation parameters.

Solar Flare Effects on VLF signal
propagation

A 5 segment-waveguide. Ne given by the Wait&Spies
model ([3]), where h and β are parametized polynomials
of the solar zenith angle χ. The solar flare-induced elec-
tron density perturbation (δNe) is described by the product
of 2 time sigmoid functions (Figures 4 and 5).
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Fig. 4: Time perturbation due to

a solar flare.
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Fig. 5: Altitude profile

perturbation due to a solar flare.
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Fig. 6: Magnitude and phase of the electric field detected at the RX station.

Background and perturbation signal separation

The Python package Pybaselines [4] was used to separate the signal associated
with a quiet ionosphere (Figure 7) from the solar-flare-induced signal (Figure 8).
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Fig. 7: Isolated background signal associated with a

quiet ionosphere.
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Fig. 8: Isolated perturbation induced by a solar flare.

Simulation-based reconstruction

The first inversion procedure consisted of introducing the isolated background
signal to an optimizer and fitting it to a polynomial of the solar zenith angle for-
ward model to obtain the polynomial coefficients. The BlackBoxOptim package
[5] was utilized to achieve this goal.
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Fig. 9: Reconstructed vs true density enhancement.

The isolated perturbation signal was introduced in a second inversion procedure
where the perturbation forward model was represented by a product of 2 sigmoid
functions. The reconstructed vs true density perturbation is shown in Figure 10
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Fig. 10: Reconstructed vs true density enhancement.

Reconstruction on Real Data (I)

The previously explained inversion framework developed with synthetic data was
applied to real data corresponding to the occurence of a M1.7 class solar flare
on 2008 March 25th. (Figure 11)
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M-class solar flare effects on VLF signals - Real data (2008/03/25)

Fig. 11: Amplitude of the total electric field measured at Piura and Punta Lobos RX stations during the 2008 March

25th M-class solar flare occurrence.

Reconstruction on Real Data (II)

The same simulation-based filtering scheme was applied
on real data as shown in Figure 12. The obtained isolated
background was introduced in a first inversion proce-
dure from which the background polynomial coefficients
are estimated. The reconstructed background signal is
shown in Figure 13.
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Fig. 12: Real data background signal isolation.
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Fig. 13: Reconstructed background signal vs isolated background signal.

Remarks

• The two step simulation-based inversion procedure
presented in this work allowed us to decently retrieve
the background ionosphere parameters and the per-
turbation amplitude.

• Preliminary results showed that the developed inver-
sion framework works on real data too (background).
The perturbation amplitude estimation is pending.
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