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Abstract

Achieving high-fidelity quantum state engineering is pivotal for quantum technology applications. This

work investigates the Stimulated Raman Adiabatic Passage (STIRAP) protocol in a three-level Λ-system
to demonstrate robust and near-perfect population transfer (|1〉 → |2〉). The system evolution is rigor-
ously modeled using the Lindblad Master Equation to account for realistic open quantum dynamics,

specifically spontaneous decay from the intermediate state |3〉. We show that the adiabatic evolution
through the Dark State, which is orthogonal to the decaying state |3〉, guarantees immunity to this
dissipation, achieving fidelities > 0.99. Furthermore, we analyze the protocol’s resilience, mapping the
fidelity landscape in the parameter space and confirming STIRAP’s intrinsic robustness against control

amplitude variations. This study demonstrates the efficacy and practical viability of STIRAP as a robust

method for coherent population transfer in realistic noisy quantum devices.

Three-Level Lambda System

A three-level lambda (Λ) system consists of two lower-energy states, |1〉 and |2〉, coupled indirectly
through an excited intermediate state |3〉, which may undergo dissipative decay.

Figure 1. Three level system

Within the rotating-wave approximation, the system is de-

scribed by the time-dependent Hamiltonian:

HS(t) = δσ22+∆2σ33+
Ωp(t)

2
(σ31+σ13)+ Ωs(t)

2
(σ32+σ23) (1)

where Ωp(t) and Ωs(t) are the pump and stokes Rabi frequen-
cies. The parameter∆ corresponds to the one-photon detun-
ing of the excited state |3〉, while δ denotes the two-photon
detuning between |1〉 and |2〉. This configuration enables co-
herent population transfer between |1〉 and |2〉 and forms the
basis of the STIRAP protocol.

In this work we model Ωp(t) and Ωs(t) as gaussian pulses:

Ωs(t) = Ω23e
−(t−ts)2/2σ2

(2)

Ωp(t) = Ω13e
−(t−tp)2/2σ2

(3)

Dark State: A coherent superposition of the lower states |1〉 and |2〉 that does not couple to the excited
state |3〉, suppressing absorption and dissipation. For δ = 0, it is defined as:

|ψD〉 = ΩP (t)|2〉 − ΩS(t)|1〉√
ΩP (t)2 + ΩS(t)2

(4)

Open Quantum System Dynamics

The system evolution is modeled using the Lindblad master equation to account for spontaneous

decay from the intermediate state |3〉 to the ground states |1〉 and |2〉. The evolution of the density
matrix ρ is governed by:

ρ̇ = −i[HS(t), ρ] +
∑
j=1,2

Lj(ρ) (5)

where Lj(ρ) = γj
(
σj3ρσ3j − 1

2{σ33, ρ}
)
are the Lindblad superoperators describing the decay from

|3〉 → |j〉 with rate γj , and σj3 = |j〉〈3|. The initial condition is ρ(0) = |1〉〈1|. This framework allows us
to study the robustness of STIRAP under realistic decoherence and decay processes.

Controlability

The system is fully controllable if the Lie Algebra generated by the Hamiltonians {H0, H1, H2} spans
su(3). The su(3) basis (8 generators) is constructed using the Lie bracket ([A,B]).

Initial: H0 = δ |2〉 〈2| + ∆2 |3〉 〈3| , H1 = |3〉 〈1| + |1〉 〈3| , H2 = |3〉 〈2| + |2〉 〈3|
Raman (Im): G3 = −i[H1, H2] = i (|2〉 〈1| − |1〉 〈2|).
Phases (Im): G4 = −i[H0, H1] = −i∆2 (|3〉 〈1| − |1〉 〈3|). Requirement: ∆2 6= 0.
Phases (Im): G5 = −i[H0, H2] = −i(∆2 − δ) (|3〉 〈2| − |2〉 〈3|). Requirement: ∆2 6= δ.

Raman (Re): G6 = −i[H0, G3] = δ (|2〉 〈1| + |1〉 〈2|). Requirement: δ 6= 0.

The set of 8 generators forms a basis for su(3) if the non-degeneracy conditions are met. The Λ system
is fully controllable ⇐⇒ δ 6= 0, ∆2 6= 0, and ∆2 6= δ

Quantum State Engineering Protocol

The Stimulated RamanAdiabatic Passage (STIRAP) protocol achieves robust |1〉 → |2〉 population trans-
fer by leveraging theDark State |ψD〉 properties: it is orthogonal to the excited state |3〉, thus providing
immunity against spontaneous decay. The STIRAP process requires Ωp,Ωs � γ (the adiabatic regime).
Once this is satisfied, further increasing the amplitudes does not significantly improve the fidelity, the

system already follows the dark state adiabatically.

Figure 2. Comparison of counter-intuitive and intuitive approaches

The protocol relies on the counter-intuitive sequence where the Stokes pulse (ΩS), coupling |2〉 and
|3〉, precedes the Pump pulse (ΩP ), coupling |1〉 and |3〉. This sequence drives the adiabatic evolution
of the Dark State:

|ψD(tinitial)〉 ≈ |1〉 −→ |ψD(tfinal)〉 ≈ |2〉 (6)

Where (ec. 4) is a coherent superposition of the ground states |1〉 and |2〉 that remains decoupled
from the dissipative excited state |3〉. Population transfer is achieved by implementing the
counter-intuitive pulse sequence (Stokes before Pump) with the Rabi frequencies ΩS(t) and ΩP (t)
(ts < tp). This timing ensures that, throughout the temporal evolution, the Dark State transforms its
composition from being predominantly |1〉 (at the start) to being predominantly |2〉 (at the end), thus
achieving robust coherent transfer and avoiding population of the intermediate state |3〉.

Results and discussion

Fidelity Maps in Parameter Space

Figure 3 shows the fidelity landscape as a function of detuning ∆ and decay rate γ, where a wide
high-fidelity region is observed. The nominal operating point (∆ = 0, γ = 0.1) lies inside this region,
indicating robustness against detuning and dissipation. The map in the (Ap, As) plane displays an
extended high-fidelity plateau, with the optimal point embeddedwithin it. This structure demonstrates

that high performance is maintained over a broad range of control amplitudes, without the need for

fine parameter tuning.

Figure 3. Fidelity maps

Robustness Against Detuning

As shown in Fig.4, the robust optimization yields a higher mean fidelity and a significantly narrower

distribution compared to the standard optimization. The histogram shows that the robust solution is

strongly concentrated near F ' 0.999, with a reduced variance (σ ≈ 0.001), while the standard opti-
mization exhibits a broader spread and lower mean fidelity (µ ≈ 0.996). This improvement is consistent
with the fidelity versus detuning curve, where the robust pulse maintains fidelities above 0.99 over a
wider detuning range, whereas the standard solution shows a pronounced degradation for large |∆|.
These results demonstrate that robust optimization effectively suppresses sensitivity to detuning fluc-

tuations.

Figure 4. Robustness

Conclusions

Implementing robust optimization significantly improves the control performance, yielding a higher

mean fidelity (µ ≈ 0.999) and a markedly narrower fidelity distribution (σ ≈ 0.001) across the
ensemble, compared to standard optimization. This demonstrates the effectiveness of robust

control techniques in suppressing sensitivity to detuning fluctuations (∆), thereby ensuring
superior and more predictable performance under realistic noisy conditions.

The adiabatic regime of STIRAP confers intrinsic robustness against control parameter variations.

Fidelity maps reveal broad, high-performance plateaus in the pulse amplitude and detuning

parameter space, thus minimizing the need for precise parameter tuning in NISQ hardware.

Further Steps

Investigate the application of CD methods (Shortcuts to Adiabaticity) to drastically reduce the

STIRAP protocol time. The goal is to accelerate the population transfer while maintaining the dark

state’s robustness, overcoming the speed limitation imposed by the strictly adiabatic regime.

Implement and validate the robustly optimized control pulses on a real quantum computer (e.g.,

IBM Quantum, IonQ devices).
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