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abstract

In this paper we invstigate the possibility of the acoustic analogue of a
phenomenon like superradiance, that is, the amplification of a sound
wave by reflection from the ergo-region of a rotating acoustic black
hole in the fluid "draining bathtub" model in the presence of a desclina-
tion be amplified or reduced in agreement with the value of the deficit
angle.

Introduction

Acoustic analogue of a black hole has been a lot studied in the lit-
erature as a concrete laboratory model for probe several aspects of
curved space quantum field theory.
In 1981, Unruh[1, 2] showed that if a fluid is barotropic and inviscid,
and the flow of the fluid is irrotational, the equation of motion that fluc-
tuation of the velocity potential of acoustic disturbance obeys, is iden-
tical to that of a minimally coupled massless scalar field propagating in
an effective curved spacetime Loretizian geometry, which can simulate
an artificial black hole[1, 2].
This paper is organized as follows. In section 2, we obtain the effec-
tive acoustic geometry. In section 3, we will show the Klein-Gordon
equation in the sonic black hole scenario. In section 4, we describe
the acoustic black hole in the presence of a disclination and the ampli-
fication sound wave. Section 5 is devoted to present our conclusions.

Effective acoustic geometry

In the absence of chemical reactions, the number of particles entering
and leaving a collision in a fluid will be conserved. For non relativistic
process, the total mass of the particles involved in the collision process
will also be conserved. As a result, if we consider a volume element of
the fluid, dV (t) (with a given set of fluid particles), which moves with
the fluid, the amount of mass inside this volume element must remain
constant. Let be ρ = ρ(~r, t) the mass density (mass per unit volume)
and let M denote the total mass in the volume, V (t). Then

dM

dt
=
d

dtV (t)
ρdV =V (t)

(
dρ

dt
+ ρ~∇r · ~v

)
dV = 0, (1)

where ~v = ~v(~r, t) is the average velocity of the fluid at point ~r and time
t. Since the volume element, dV (t), is arbitrary, the integrand must
be zero and we find

dρ

dt
+ ρ~∇r · ~v = 0. (2)

If we that the convective derivative is given by d/dt = ∂/∂t+ ~v · ~∇r,
then we can also write

∂ρ

∂t
+ ~∇r · (ρ~v) = 0, (3)

where ρ~v is the mass flux. The eq. (3) is a continuity equation and it
is a direct consequence of the conservation of mass in the fluid. The
Euler equation is given by

ρ
d~v

dt
≡ ρ[

∂~v

∂t
+ (~v · ~∇)~v] = ~f + ~F , (4)

where f is a force per unit volume acting on the walls of the volume
element and F is an external force per unit volume which couples
to the particles inside the volume element (it could be an electric or
magnetic field for example). We consider a fluid been inviscid (zero
viscosity), with the only forces present being those due to pressure p,
i.e., ~f = −~∇p. In this case, ~F equal to zero. In the sense, we consider
that the fluid is locally irrotational (free vortex), that is, ~v = −~∇φ, and
the fluid is barotropic, i.e., the density ρ is a function of pressure p only.
In this case, we can define the enthalpy h as

h(p) =
p
0
dp′

ρ(p′)
(5)

or
~∇h =

~∇p
ρ
. (6)

The equation (4) now reduce to

−∂φ
∂t

+ h +
1

2

(
~∇φ
)2

= 0. (7)

We will follow to study sound wave, the usual procedure and linearize
the continuity and Euler ’s equations around some background flow,
by setting ρ = ρ0 + ερ1, p = p0 + εp1, φ = φ0 + εφ1, and discarding all
terms of order ε2 or higher.
Then, the continuity equation leads to

∂ρ0

∂t
+ ~∇ · (ρ0~v0) = 0. (8)

and
∂ρ1

∂t
+ ~∇ · (ρ1~v0 + ρ0~v) = 0, (9)

Expanding h(p) as h(p0+εp1) ' h(p0)+εdhdp|p=p0 = h0+εp1
ρ0

= h0+εh1,

the eq. (4) becomes

−∂φ0

∂t
+ h0 +

1

2
(~∇φ0)2 = 0, (10)

and
−∂φ1

∂t
+
p1

ρ0
− ~v0 · ~∇φ1 = 0,

that is

p1 = ρ0

(
∂φ1

∂t
+ ~v0 · ~∇φ1

)
. (11)

Then, since the fluid is barotropic we have

ρ1 =
∂ρ

∂p
p1. (12)

Substituting eq. (11) into (12) we get

ρ1 =
∂ρ

∂p
ρ0

(
∂φ1

∂t
+ ~v0 · ~∇φ1

)
. (13)

Now, substituting eq. (13) into eq. (9) we obtain

− ∂
∂t

[
∂ρ

∂p
ρ0

(
∂φ1

∂t
+ ~v0 · ~∇φ1

)]
+ ~∇ ·

[
ρ0
~∇φ1 −

∂ρ

∂p
ρ0~v0

(
∂φ1

∂t
+ ~v0 · ~∇φ1

)]
= 0.(14)

The eq. (14) describes the propagation of the linearized scalar potential φ1, if
φ1 is determined, eq. (11) determines ρ1. Thus, this wave equation completely
determines the propagation of acoustic disturbances, where the local speed of
sound is defined by

c−2 ≡ ∂ρ

∂p
. (15)

Thus, it can now be shown that the eq. (14) can also be obtained from the
usual curved space Klein Gordon equation[wisser]

1√
−g

∂µ
(√
−ggµν∂ν

)
φ = 0, (16)

where gµν is a metric tensor (with Lorentizian signature), not of spacetime itself.
but an acoustic ′′analog spacetime′′.

Klein-Gordon equation in the sonic black
hole scenario - Draining bathtub flow model

In this model, the velocity potential, in polar coordinates is given by[wisser]

φ(r, θ) = A log r + Bθ, (17)

where A and B are real constants and φ present a sink in the origin. This leads
to the velocity profile

~v =
A

r
r̂ +

B

r
θ̂, (18)

then, the metric in the exterior region, i.e., outside of core at r = 0, turns out

ds2 = −

(
c2 − A2 + B2

r2

)
dt2 − 2A

r
drdt− 2Bdθdt + dr2 + r2dθ2 + dz2, (19)

where c is the velocity of sound. Defining[sou]

dt→ dt +
|A| r(

r2c2 − A2
)dr ; dθ → dθ +

B |A| r
r
(
r2c2 − A2

)dr
we obtain, after a rescaling of the time coordinate by c

ds2 = −

(
1− A2 + B2

c2r2

)
dt2 −

(
1− A2

c2r2

)−1

dr2 − 2
B

c
dθdt + r2dθ2 + dz2,(20)

where , the radius of the ergosphere is given by the vanishing of g00, i.e., re =(
A2 + B2

)1/2
/c, and it has a singularity at rh = |A| /c, which signifies the event

horizon. We observe on eq. (18) that for A > 0 we are dealing with a past event
horizon, i.e., acoustic white hole and for A < 0 we dealing with a future acoustic
horizon, i.e., acoustic black hole.

Acoustic black hole in the presence of a
disclination and amplification sound wave

In a recent paper[F] we have discussed the phenomenon of sound amplification
in the acoustic black hole analogue.
Thus, in this paper we propose the analyze the influence of an acoustic black
hole analogue in the presence of a disclination in the sound wave amplification.
In the geometric approach, the medium with a disclination has the line element
given by

ds2 = −

(
1− A2 + B2

c2r2

)
dt2 −

(
1− A2

c2r2

)−1

dr2 − 2
B

c
αdθdt + r2α2dθ2 + dz2,(21)

in cylindrical coordinates. This metric is equivalent to the boundary condi-
tion with periodicity of 2πα instead of 2π around the z−axis. In the Volterra
process[Kle] of disclination creation, this corresponds to remove (0 < α ≤ 1)
or insert (2π > α ≥ 1) a wedge of material of dihedral angle λ = 2π(α− 1)[G].
But, for the velocity potential given by eq. (18), the analogue black hole metric
is basically a (2 + 1) dimensional flow with a sink at the origin. The metric given
by (21) reduce to

ds2 = −

(
1− A2 + B2

c2r2

)
dt2 −

(
1− A2

c2r2

)−1

dr2 − 2
B

c
αdθdt + r2α2dθ2.(22)

Now, we write the Klein-Gordon equation (16) in the background metric (22)
and we can separate variables by the substitution

φ(t, r, θ) = exp i(ωt−mθ)R(r),

where m is an integer, we assume that ω > 0, then, the radial function satisfies
the equation given by

1

r

(
1− A2

c2r2

)
d

dr

[
r

(
1− A2

c2r2

)
d

dr

]
R(r) +[

ω2 − 2Bmω

αcr2
− m2

α2r2

(
1− A2 + B2

c2r2

)]
R(r) = 0. (23)

Introducing the tortoise coordinate r∗ such that

d

dr∗
=

(
1− A2

r2c2

)
d

dr
(24)

which implies that

r∗ = r +
|A|
2c

log

∣∣∣∣∣∣r −
|A|
c

r +
|A|
c

∣∣∣∣∣∣ . (25)

Observe that the horizon r =
|A|
c maps to r∗ → −∞ and while r →∞ corresponds

to r∗ → +∞. Now, introducing a new radial function g(r∗) ≡ r1/2R(r), we obtain
the equation

d2g(r∗)
dr∗2

+

[
q(r)− 1

2r2

(
dr

dr∗

)2

−

(
A2

r4c2
− 3

4r2

)
dr

dr∗

]
g(r∗) = 0, (26)

where

q(r) =
A2m2 + Bm2 − c2m2r2 − 2Bαmr2ω + α2r4ω2

c2α2r4
. (27)

Now, analyzing eq. (26) when r →∞, we obtain

d2g(r∗)
dr∗2

+ ω2g(r∗) = 0, (28)

whose solution is given by

g(r∗) = exp (iωr∗) +R exp(−iωr∗). (29)

The first term of eq. (29) corresponds to an ingoing wave and the second term
corresponds to de reflected wave, where R is the reflection coefficient in the sense
of potential scattering. Now using this solution of the differential equation together
with it complex conjugate, we calculate the Wronskian of the solutions (29) given by

W(+∞) = −2iω
(

1− |R|2
)
. (30)

Thus, we considering the solution near the horizon, is that, r∗ → −∞, the eq. (26)
becomes

d2g(r∗)
dr∗2

+
(
ω −mΩH,α

)2
g(r∗) = 0 (31)

where ΩH,α ≡ Bc
αA2 is the angular velocity of the acoustic black hole in the presence

of a disclination. Near the horizon, we suppose that just the solution identified by
ingoing wave is physical, is that

g(r∗) = T exp[i
(
ω −mΩH,α

)
r∗], (32)

where T is the transmission coefficient. Once again, we calculate the Wronskian of
the solutions (32)

W(−∞) = −2i
(
ω −mΩH,α

)
|T |2 . (33)

Thus, remind that two linearly independent solutions of the same differential equa-
tion must lead to a constant Wronskian, so of eqs. (30) and (33) we obtain

|R|2 = 1−
(

1− m

ω
ΩH,α

)
|T |2 . (34)

We can observe in eq. (34) that, for frequencies in the range 0 < ω < mΩH,α, the
reflection coefficient has a magnitude larger than unity whose imply the amplification
relation of the ingoing sound wave near horizon regions. This imply that the ingoing
wave removes mass (energy) of the acoustic black hole[F]. As ΩH,α depends on
the disclination, then, the same affects the quantity of removed energy of the hole.
When 0 < α ≤ 1 whose corresponds to remove a wedge of material it is possible to
accentuate the quantity of retired energy of the acoustic black hole, in other words,
larger amplification of the ingoing sound wave and when 2π > α ≥ 1 whose cor-
responds to insert a wedge of material represent to the possibility to attenuate the
quantity of removed energy of the acoustic black hole.

Conclusions

In this paper we shown that the presence of the disclination modify the quantity
of removed energy of the acoustic black hole and that, it is possible to accentuate
or to attenuate the amplification of the removed energy of the acoustic black hole
and still exists the possibility to cancel the superradiance effect to α equal to mΩ/ω

where Ω ≡ Bc
A2 is the angular velocity of the acoustic black hole in the absence of the

disclination, in this case, the reflection coefficient is equal to unity. Those aspects
perhaps can be proven in future experimental realizations.
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