

The sound horizon scale * at baryon drag epoch

Armando Bernui

* work in collaboration with Edilson de Carvalho, Felipe Avila, Camila Novaes

standard candle

standard candle standard ruler

BAO: a cosmological ruler

Baryon Acoustic Oscillations (BAO)?

Are primordial sound waves propagating in a tightly coupling baryon +photon fluid

Exm: 2D waves in a medium

BAO: primordial origin It was once...

BAO: primordial origin

Density fluctuations field: $\delta(t_0, \mathbf{r})$

 $-4\pi G\bar{\rho}(t)\delta(t,\mathbf{r})$

BAO: primordial origin

Density fluctuations field: $\delta(t_0, \mathbf{r})$

CMB Sound Waves in the Early Universe

Before recombination:

- > Universe is ionized
- Photons provide enormous pressure and restoring force
- Density perturbations oscillate as sound (or acoustic waves)

After recombination:

- > Universe is neutral
- Photons travel freely; baryons form galaxies
- Each initial overdensity (DM & gas) is an overpressure that launched a spherical sound wave: shell of gas
- Overdensity in shell (gas) and in the original center (DM) both seed the formation of galaxies. Preferred separation: the shell radius!

Now large-scale modes enter the horizon $k > k_J \Leftrightarrow \lambda < \lambda_J \Rightarrow \delta(t) = ?$ $k_J^2 \equiv \frac{4\pi G \bar{\rho} a^2}{c_s^2}$ $\ddot{\delta}_{\mathbf{k}} + 2\frac{\dot{a}}{a}\dot{\delta}_{\mathbf{k}} + (k^2 - k_J^2)c_s^2 a^{-2} \delta_{\mathbf{k}} = 0$

Now, dm decouples from the γ b fluid: - baryon-photon:

$$\ddot{\delta}_{\gamma b} + 2\frac{\dot{a}}{a}\dot{\delta}_{\gamma b} + \omega_{\mathbf{k}}^{2}\delta_{\gamma b} \simeq 0$$

https://skyandtelescope.org/wp-content/uploads/anim.gif

https://skyandtelescope.org/wp-content/uploads/anim_many.gif

Does this mean one should "see" a BAO pattern in galaxy surveys? 12h

Does this mean one should "see" a BAO pattern in galaxy surveys? 12h

BAO: cosmological ruler

https://www.youtube.com/watch?v=jpXuYc-wzk4

In 3D BAO signature is find in spheres of radius 150 Mpc BAO: how to extract the BAO signature from astronomical surveys?

a random distribution?

2PCF: a tool to explore BAO signature!

Large-scale structure in 3D

3D

3D-2PCF

$$\xi(s) = \frac{DD(s) - RR(s)}{RR(s)}$$

BAO: the data analyses

1: calculating the sound horizon scale

Sound horizon scale computations

Planck-18 (m arXiv:1807.06209 γ

(multiplying r_s x h from Table 2)

$$r_{\rm drag} = 147.09 \pm 0.26 \,{
m Mpc}$$

 $H_0 = 67.36 \pm 0.54 \, km/s/{
m Mpc}$
 $r_s \equiv r_{\rm drag} \in [98.11, 100.05] \,{
m Mpc} \, h^{-1}$

WMAP9 arXiv:1212.5226 (from the Cosmological parameters Table(s)) $r_{\rm drag} = 152.3 \pm 1.3 \,{
m Mpc}$ $H_0 = 70.0 \pm 2.2 \, km/s/{
m Mpc}$ $r_s \equiv r_{\rm drag} \in [102.4, 110.9] \,{
m Mpc} \, h^{-1}$

Sound horizon scale computations Planck-18 $r_{\rm drag} = 147.09 \pm 0.26 \,{\rm Mpc}$ $H_0 = 67.36 \pm 0.54 \, km/s/Mpc$ $r_s \equiv r_{\rm drag} \in [98.11, 100.05] \,{\rm Mpc} \, h^{-1}$ 6000 WMAP 3-year 5000 • ACBAR $((l+1)C_l/2\pi \ (\mu K)^2)$ 4000 WMAP9+SPT+ACT 3000 2000 1000 $r_{\rm drag} = 146.33 \pm 0.89 \; {\rm Mpc}$ 10 100 500 $H_0 = 70.5 \pm 1.6 \, km/s/Mpc$ $r_s \equiv r_{\rm drag} \in [100.2, 106.1] \,{\rm Mpc} \, h^{-1}$

data from Table 2 pag.15, arXiv:1807.06209

 $r_s = (147.05 \pm 0.30) \times 0.6727 = 98.9205 \pm 0.2018 \,\mathrm{Mpc} \, h^{-1}$

Planck-18, arXiv:1807.06209

	Parameter	Plik best fit	Plik[1]
primary Secondary	$\Omega_{\rm b}h^2$	0.022383	0.02237 ± 0.00015
	$\Omega_{\rm c}h^2$	0.12011	0.1200 ± 0.0012
	$100\theta_{\rm MC}$	1.040909	1.04092 ± 0.00031
	au	0.0543	0.0544 ± 0.0073
	$\ln(10^{10}A_s)$	3.0448	3.044 ± 0.014
	$n_{\rm s}$	0.96605	0.9649 ± 0.0042
	$\overline{\Omega_{\mathrm{m}}h^2}$	0.14314	0.1430 ± 0.0011
	$H_0 [\mathrm{km}\mathrm{s}^{-1}\mathrm{Mpc}^{-1}]\ldots$	67.32	67.36 ± 0.54
	$\Omega_{ m m}$	0.3158	0.3153 ± 0.0073
	Age [Gyr]	13.7971	13.797 ± 0.023
	$\sigma_8\ldots\ldots\ldots\ldots\ldots\ldots$	0.8120	0.8111 ± 0.0060
	$S_8 \equiv \sigma_8 (\Omega_{\rm m}/0.3)^{0.5}$.	0.8331	0.832 ± 0.013
	$Z_{\rm re}$	7.68	7.67 ± 0.73
	$100\theta_*$	1.041085	1.04110 ± 0.00031
	$r_{\rm drag}$ [Mpc]	147.049	147.09 ± 0.26

$$r_{\rm drag} = \int_{\eta_i}^{\eta_{\rm drag}} c_s(\eta) \, d\eta = \int_{z_{\rm drag}}^{\infty} \frac{c_s(z)}{H(z)} \, dz \equiv r_{\rm S}$$

$$c_s^2 = \frac{1}{3(1+R)} = \frac{1}{3} \frac{4\rho_{\gamma}}{(4\rho_{\gamma} + 3\rho_b)} = \frac{1}{3} \frac{4\Omega_{\gamma}}{(4\Omega_{\gamma} + 3\Omega_b)}$$

Sound horizon scale computations

$$c_s^2 \equiv \frac{\partial p_{\gamma b}}{\partial \rho_{\gamma b}} = \frac{1}{3\left(1+R\right)} ; R \equiv \frac{(\rho_b + p_b)v_b}{(\rho_\gamma + p_\gamma)v_\gamma} = \frac{\rho_b + p_b}{\rho_\gamma + p_\gamma} = \frac{3\rho_b}{4\rho_\gamma}$$

 \mathcal{Z}

Sound horizon scale computations

2nd form to calculate r_s $r_s = \int_{z_i}^{\infty} \frac{c_s(z)}{H(z)} dz$

Notice that the sound horizon scale computation was done using cosmological model parameters and model hypotheses

Is there a form to <u>calculate</u> r_s in a model-independent approach? (+ parameters-independent) Sound horizon scale measurements

BAO: the data analyses

2: choose the cosmic tracer and perform the measurement analyses

$*$
 to calculate \neq to measure

SDSS Main Galaxy Sample (MGS)

Different colors = diferent cosmic tracers

Using Cosmography one calculates the 2PCF: $\xi = \xi(s)$ and measures the sound scale horizon

3rd form to calculate r_s

R.C. Nunes et al., arXiv:2002.09293

Conclusions

- Accurate measurements of the sound horizon scale are extremely important to study LSS of the Universe
- The BAO measurement is a statistical procedure, a good S/N depends on suitable number density of cosmic objects
- The sound horizon scale can also be obtained by Bayesian analyses with other data sets

Collaborators and scientific Collaborations

Maybe, the most important thing one can do for young scientists is to promote an ambient to motivate them to develope their scientific curiosity, creativity, mutual discussions, ... where people use their skills to solve <u>challenging problems</u>. In this collaborative ambience to learn and to teach

are pleasant activities.

Eisenstein et al., 2005

