Traversable wormholes, linearized perturbations of BTZ metrics and ANEC violation

J. Bonifacio, C. Rivera, T. Vargas

Updated: 2020/09/24

Grupo de Física Teórica, Universidad Nacional Mayor de San Marcos

Traversable Wormholes in Classical Gravity & AdS/CFT

Traversable Wormholes (TW) in **Classical Gravity** requires a violation of ANEC (produced by some *exotic matter*, etc):

$$\int_{-\infty}^{+\infty} T_{\mu\nu} k^{\mu} k^{\nu} d\lambda \geq 0$$

ANEC (Averaged Null Energy Condition)

There are several causal inconsistencies in this picture: *Closed timelike curves, warp drives, time machines...*

But in **Holography** ... A specific toy model in AdS_3/CFT_2 (modified by a small double trace deformation) produces an amount of negative energy density in the backreacted geometry, explicitly violating ANEC without having the causal inconsistencies described above. (GFW'16)

Linearized Perturbations of BTZ Black Holes

Turning on a coupling between the $\ensuremath{\mathsf{L}}/\ensuremath{\mathsf{R}}$ boundaries of a BTZ blackhole,

$$\delta H(t_1) = -\int d^{d-1}x_1 h(t_1, x_1) \mathcal{O}_R(t_1, x_1) \mathcal{O}_L(-t_1, x_1)$$

produces a backreaction in the bulk geometry (BTZ) due by a small spherically symmetric perturbation $h_{\mu\nu}$. In Kruskal coordinates (U,V) :

$$ds^{2} = h_{UU}dU^{2} + 2\left(-\frac{2l^{2}}{(1+UV)^{2}} + h_{UV}\right)dUdV + 2h_{U\phi}dUd\phi + h_{VV}dV^{2} + 2h_{V\phi}dVd\phi + \left(\frac{r_{+}^{2}(1-UV)^{2}}{(1+UV)^{2}} + h_{\phi\phi}\right)d\phi^{2}$$

The backreacted geometry is expressed as $\tilde{g}_{\mu\nu} = g_{\mu\nu} + h_{\mu\nu}$, modifying the Einstein equations at a linealized level in the UU component:

$$\frac{1}{2}\left[I^{-2}(\mathbf{h}_{UU}+\partial_U(U\mathbf{h}_{UU}))-\mathbf{r}_+^{-2}\partial_U^2\mathbf{h}_{\phi\phi}\right]=8\pi G_N\left\langle T_{UU}\right\rangle$$

Violation of the Averaged Null Energy Condition (ANEC)

$$8\pi G_N \int T_{UU} dU = \frac{1}{2} I^{-2} \int h_{UU} dU$$

The opening of the "throat" is ΔV :

$$\Delta V(U) = -(2g_{UV}(V=0))^{-1} \int_{-\infty}^{U} h_{UU} dU$$

Since $g_{UV}(V = 0) < 0$ and $\Delta V(U) < 0$, the integral $\int_{-\infty}^{U} h_{UU} dU$ needs to be negative in order to have a traversable wormhole.

From the linearized perturbed Einstein equations, this requirement is no other that an explicit violation of the ANEC condition,

$$\int T_{UU} dU \sim \int_{-\infty}^{U} h_{UU} dU \quad \rightarrow \int T_{UU} dU < 0$$