

# Au-SiO<sub>2</sub> Nanoshells Operating at the First Biological Window

Dra. Karla Santacruz Gómez karla.santacruz@unison.mx "El saber de mis hijos hará mi grandeza"



September, 26 2020

#### UNIVERSIDAD DE SONORA (Hermosillo, Sonora, México)







**FIRSTUP** 

**CONSULTANTS** 



## **BIONANOMED & MEDICAL PHYSICS GROUP**

Universidad de Sonora

#### Research interest:

#### **BIONANOMEDICINE**

- 1. Synthesis and characterization of nanomaterials for biomedical applications.
  - Magnetic, Metallic nanoparticles and Nanocomposites.
- 2. *In situ* plasmonic or magnetically-induced hyperthermia for tumor annihilation.
- 3. Surface Enhanced Raman Spectroscopy (SERS) for environmental and biological analysis.
- 4. Theranostics: Nanoparticles-based diagnosis and treatment combined.

#### MEDICAL PHYSICS

- 1. Synthesis and Characterization of nanomaterials for ionizing radiation detection: personal dosimetry.
- 2. Radiobiology: Biological effects of ionizing radiation on biological tissues.

karla.santacruz@unison.mx



CONSULTANT

## OUTLINE

#### Introduction

- Metallic NPs Bioaplications
- Surface Plasmon Resonance
- Biological Window

## Methodology

- Synthesis:
- SiO2 Janus based Nanoparticles
- Colloidal gold seed
- Au:SiO<sub>2</sub>

# Results

#### Conclusions





#### METALLIC NANOPARTICLES (MNPS) BIO-APPLICATIONS



K. Mo, Santacruz-Gomez
K, A. H., Landon, P. B., ., Kang, H. et al. (2016).
Magnetically-responsive silica–gold nanobowls for targeted delivery and SERS-based sensing.
Nanoscale, 8(23), 11840-11850.

Janetanakit, W., **Santacruz-Gomez, K.**, R. Lal et al,. (2017). **Gold embedded hollow silica nano golf balls for imaging and photothermal therapy**. *ACS Applied Materials & Interfaces*.





#### NIR WINDOW IN BIOLOGICAL TISSUE

- First biological window : from 700 nm to 950 nm (NIR-I),
- Second biological window : from 1000 to 1350 (NIR-II).
- Third biological window: from 1550 to 1870 (NIR-III)
- Each window providing increased transparency toward biological matter.



Macmillan Publishers Ltd: Nature Nanotechnol., 2009, 4, 710–711

#### The Aim of this Work Was...

To synthethize Silica-gold nanoshells  $(Au:SiO_2)$  in two ways (Au embedded and Au core-shell) optimized to absorbed in the first biological spectral window were synthetized in two different ways to add the gold nanoparticles.



# Au:SiO2 (Au embedded)



**SYNTHESIS** 

#### Au:SiO2 (Au core-shell)

FIRSTUP



### TEM Image Of Au:SiO<sub>2</sub> Nanoshells

# Au:SiO2 (Au embedded)



# Au:SiO2 (Au core-shell)





• Au:SiO<sub>2</sub> (Au core-shell) 240 nm





# SURFACE PLASMON RESONANCE



#### PHOTOCHEMICAL EFFECT



The microscope includes an optical fibre, an 850 nm laser was coupled to this fibre and the IR light was delivered directly into the microscope objective to the sample. PPTT killed 60.5% of the HeLa cells, whereas 97.3% of cells remained viable in samples irradiated in the absence of  $_{PEG}GNRs$ ; in comparison, both non-irradiated samples (with and without  $_{PEG}GNRs$ ) shown a non-significant effect on viability



## CONCLUSIONS

• Two types of Au:SiO<sub>2</sub> nanostructures absorbing at the first biological window were synthetized: (Au core-Shell and Au embedded).

| Au:SiO <sub>2</sub>            | Au core-Shell | Au embedded |
|--------------------------------|---------------|-------------|
| Size (nm)                      | 240           | 150         |
| <b>Optical absorption (nm)</b> | 400 - 950     | 400 - 800   |
| LSPR máximum(nm)               | 700nm         | 600nm       |
| LSPR max intensity (a.u.)      | 0.3           | 0.8         |

• After 5 and 10 minutes of (850 nm) laser exposure of HeLa Cells incubated with Au:SiO2 PEGylated nanoshells, no significative photochemical damage was observed



# THANKS









