

Primordial Non-Gaussianities * of inflationary step-like models

Armando Bernui

 \star

work in collaboration with Camila Novaes and Micol Benetti

Outline

- Inflationary paradigm (and non-Gaussianity)
- Inflationary step-like models
- Challenge in detecting NG on CMB data
- Analysis method
 - The step-like models
 - Data description
 - The Minkowski Functionals
- Results
- Concluding remarks

Inflationary paradigm vs. Planck data

The simplest inflationary scenario

Supports the Standard Cosmological model.

It produces primordial perturbations nearly:

- o adiabatic,
- \circ scale-invariant, $n_s \sim 1$,
- Gaussian.

 \hookrightarrow excellent agreement with the recent CMB data from the Planck satellite.

Gaussianity

Probability density function (PDF):

(Planck Collaboration, 2013)

$$P(f) = \frac{1}{(2\pi)^{N_{pix}/2|\xi|^{1/2}}} \exp\left[-\frac{1}{2}\sum_{ij}f_i(\xi^{-1})_{ij}f_j\right],$$

 $f_i \equiv f(\hat{n}) = \frac{\Delta T}{T_{RCF}}(\hat{n}) \in \xi_{ij} \equiv \langle f_i f_j \rangle \Longrightarrow$ two-point correlation function.

Non-Gaussianity

For non-Gaussian fluctuations:

• *n*-points correlation function.

$$\langle f(\widehat{n}_1)f(\widehat{n}_2)...f(\widehat{n}_n)\rangle.$$

• Bispectrum estimator $\langle a_{l_1m_1}a_{l_2m_2}a_{l_3m_3}\rangle \iff a_{l_1m_1}^{obs}a_{l_2m_2}^{obs}a_{l_3m_3}^{obs}$.

Some NG types

$$B_{\Phi}(k_1, k_2, k_3) \equiv f_{NL}F(k_1, k_2, k_3)$$

• For example: Local, equilateral, orthogonal, ...

Some NG types

For the local type NG:

$$\Phi(\mathbf{x}) = \Phi_L(\mathbf{x}) + f_{NL}[\Phi_L^2(\mathbf{x}) - \langle \Phi_L^2(\mathbf{x}) \rangle]$$

- Inflationary single-field models $\longrightarrow f_{NL} \sim \mathcal{O}(10^{-1}).$
- However ... Some non-minimally coupled inflationary models can produce various amounts of other types of NG.

Challenge detection: low amplitude

 $\Rightarrow f_{\rm NL} = 38 \pm 18$, for $N_{\rm side} = 512$ (68% CL; Planck Collaboration, 2014)

Inflationary step-like models

 \rightarrow Slow-roll approximation: $(1/2)\dot{\phi}^2 \ll V(\phi)^2 \leftarrow$

 → A violation of this condition can be modelled by adding a local feature to an otherwise inflation potential: e.g. a step.
 Our choice for this work:

$$V(\phi) = \frac{m^2 \phi^2}{2} \quad \rightarrow \quad V(\phi) = \frac{m^2 \phi^2}{2} \left[1 + c \tanh\left(\frac{\phi - b}{d}\right) \right]$$

b = field where the step is located,

c = height of the step,

$$d = slop.$$

Inflationary step-like models

The power spectrum of primordial perturbation is found to be a power-law with superimposed oscillations :

The step-like models:

- Cosmological parameters: $\Omega_b h^2 = 2.22$, $\Omega_c h^2 = 0.1212$, $\tau = 0.089$, $100\theta = 1.0411$, $n_s = 0.959$, and $10^9 A_s = 2.20$.
- Step parameters:
 - Model A: b = 14.66, log $c = -2.85 \log d = -1.44$
 - Model B: Same as Model A but with log c 4 times higher.

The models **A** and **B**.

Data description

We analysed 5 sets of Monte Carlo CMB maps, constructed using:

- (i) ΛCDM power spectrum (Planck results);
- (ii) Model A (best-fit to the angular power spectrum data);
- (iii) Model B;
- (iv) ΛCDM power spectrum + local-NG given by $f_{NL} = 38$;
- (v) ΛCDM power spectrum + local-NG given by $f_{NL} = 100$.

Data description

Each dataset is composed by 1000 CMB maps, constructed also considering:

- $\circ \ N_{\it side} = 512$
- $\circ\,$ Multipole range: $10 \leq \ell \leq 50$

The Minkowski Functionals

- Widely used to study the statistical CMB properties.
- Hadwiger theorem: all the morphological properties of a d-dimensional space can be described using d+1 MFs.
- Given a connected region, such that, $\nu(\theta, \phi) = \Delta T / \sigma_0 > \nu_t$:

• Area $\Rightarrow V_0 = A(\nu) = \sum a_i$, • Perimeter $\Rightarrow V_1 = P(\nu) = \sum l_i$, • Genus $\Rightarrow V_2 = G(\nu) = \sum g_i = N_{hot} - N_{cold}$,

• $V_3 = N_{clusters}(\nu)$: number of connected regions.

The Minkowski Functionals

CMB maps for different ν thresholds

nu > 0.5

nu > 1.5

nu > 2.5

The Minkowski Functionals

MFs: Area (k = 0), Perimeter (k = 1), Genus (k = 2), $N_{clusters}$ (k = 3).

$$\{V_k\} \equiv (V_0, V_1, V_2, V_3)$$
$$[-\nu_{max} \ \mathbf{a} \ \nu_{max}] \Rightarrow \nu = \nu_1, \nu_2, \dots \nu_n$$
$$\{\nu_{max}, n\} = \{3.5, 26\}$$

For the *i*-th temperature map and for the *k*-th MF we have the vector:

$$v_k^i \equiv (V_k(\nu_1), V_k(\nu_2), \dots V_k(\nu_n))|_{\text{for the }i\text{-th map}}.$$
(1)

MFs as non-Gaussian estimators

Average MFs curves: (i): Λ CDM, (ii): *Mod-A*, (iii): *Mod-B*, (iv): NG- $f_{NL} = 38$ and (v): NG- $f_{NL} = 100$

Conclusion: no clear signature left by different NGs.

MFs as non-Gaussian estimators

(ii) Relative difference with respect to ΛCDM : *Mod-A*, (iii): *Mod-B*, (iv): $NG-f_{NL} = 38$ and (v): $NG-f_{NL} = 100$ $< v_{\rm D} >^{\rm ACDM} (10^{-8})$ $< v_1 >^{ACDM} (10^{-8})$ 0.20 8 0.15 6 0.10 <vo></br> 0.05 <v1 Perim. 0.00 2 -0.05 I 0 <1/>
</ -0.10 <_0v>) -4 -2 -2 2 2 0 4 0 -4 4 ν ν $< v_{e} > ^{ACDM}$) / $< v_{e} > ^{ACDM}$ (10⁻⁸) $< v_3 >^{ACDM} (10^{-2})$ 20 12 10 10 8 <v3>^ACDM) N_clus -10 2 n <V3> -20 2 2 -2-2 0 0 4 -4 4

NG in MC CMB maps from Models A and B

Question: Are there distinguishable non-Gaussian features left in simulated CMB maps generated by *Models A* and *B*?

Coming back to the previous plots ...

NG in MC CMB maps from Models A and B (ii) Relative difference with respect to ΛCDM: *Mod-A*, (iii): *Mod-B*, (iv):

 $NG-f_{NL} = 38$ and (v): $NG-f_{NL} = 100$

NG in MC CMB maps from Models A and B

- Inflationary Models A and B produce a noticeable Gaussian deviation;
- $\circ~$ These deviations are best revealed by the Perimeter and $N_{clusters}$ MFs;
- The non-Gaussian signatures appearing in the sets of MC CMB maps emerging from *Models A* and *B* are **not of the type**, **neither intensity**, expected in maps contaminated with primordial *local*-NG.

NG from Models A and B are contributions with a definite signature **originated in the inflationary phase** \implies **probe** to the primordial universe.

Mapping NG in Planck CMB maps

Perimeter: (i): Λ CDM, (ii): *Mod-A*, (iii): *Mod-B*, (iv): NG- $f_{NL} = 38$ and (v): NG- $f_{NL} = 100$

Mapping NG in Planck CMB maps

 $N_{clusters}$: (i): Λ CDM, (ii): Mod-A, (iii): Mod-B, (iv): NG- $f_{NL} = 38$ and (v): NG- $f_{NL} = 100$

- (i) Λ CDM power spectrum (Planck results);
- (ii) Model A (best-fit to the angular power spectrum data);
- (iii) Model B;
- (iv) Λ CDM power spectrum + local-NG given by $f_{NL} = 38$;
- (v) ΛCDM power spectrum + local-NG given by $f_{NL} = 100$.
- χ^2 values calculated from the MFs curves obtained for each Planck map and the average MFs over 1000 realisations of the sets (i) to (v). [UT78, 25 dof.]

MF	Planck	Data set				
	map	(i)	(ii)	(iii)	(iv)	(v)
Area (v_0)	SMICA	34.0	35.9	39.8	36.7	42.1
	NILC	34.3	36.3	40.3	37.3	43.0
	SEVEM	33.8	35.6	39.6	36.0	41.0
	Commander	33.0	34.9	38.8	35.5	40.9
Perimeter (v_1)	SMICA	26.2	21.0	78.4	29.5	34.1
	NILC	27.1	22.9	82.3	30.5	35.3
	SEVEM	24.8	24.9	92.3	27.7	32.2
	Commander	27.2	23.4	83.5	30.5	35.1
Genus (v_2)	SMICA	44.6	43.8	47.3	48.4	51.3
	NILC	47.7	47.8	50.3	54.5	58.2
	SEVEM	40.4	39.2	43.0	43.5	45.8
	Commander	44.7	43.5	46.7	48.0	50.4
N _{clusters} (v ₃)	SMICA	22.0	23.5	57.9	23.7	26.3
	NILC	27.1	26.1	55.3	29.8	32.5
	SEVEM	18.6	18.4	50.3	18.7	20.1
	Commander	30.0	30.9	63.9	30.1	31.7

Concluding remarks

[arXiv:1507.01657]

From the MFs:

- The MFs are able to discriminate the different types and amplitudes of NGs.
- Order in sensitivity: Perimeter > $N_{clusters}$ > Genus \gg Area.

Detection of NGs - Models A and B:

- The non-Gaussian contribution found in these sets of MC CMB maps are of primordial origin.
- The Gaussian deviations are not accounted by primordial *local*-NG, neither intensity nor in signature.
- The non-Gaussian signatures in Planck CMB data are better described by MC maps seeded by *Model's A* CMB spectrum.

MFs as non-Gaussian estimators

- A single statistical estimator is not sensible enough to detect any non-Gaussian contribution (or combination of them) present in CMB maps;
- The Gaussian deviations shown in the plots make clear that: The MFs are able to discriminate distinct NGs imprinted in CMB maps!