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The Lane-Emden Equation
The Lane-Emden equation:
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is of interes in physics due to its aplications in various fields as astrophysics,
quantum mechanics and kinetic theory.

In astrophysics, the Lane-Emden equation provides us with a detailed ex-
planation of the astrophysical properties of these stars based on newtonian
self-gravitating, spherically symmetric and polytropic fluid [1]. To derive
it, we begin with the equations of mass continuity and of hydrostatic equi-
librium. Since there are three unknowns (pressure, density, and mass
as a function of radius) and only two equations, we need to introduce
an additional equation. For polytropes such equation is provided by the
pressure-density relation

P = Kρ1+1
n. (2)

This adds a third equation, and the set of three equations can then be
reduced to a single differential equation whose terms depend on n and on
K , which after an scale transform gives us ec. 1

Sympy
Sympy is a Python library for symbolic mathematics. It aims to become a full-
featured computer algebra system (CAS) while keeping the code as simple
as possible in order to be comprehensible and easily extensible [2].Although
Sympy is not a necessary tool to solve the Lane-Emdem equation, in this
work we use it to show the capacity of the tool as a support in solving
other problems that may require the use of a CAS due to the density of the
algebraic manipulations required to address them.

With Sympy we can define the Lane-Endem equation as follows.

l h s = s i m p l i f y (
(1 / x i ** 2) * D e r i v a t i v e (

( x i ** 2) * D e r i v a t i v e (
the ta ( x i ) , x i

) , x i
) . do i t ( )

)
rhs = −the ta ( x i ) ** n
lane_endem_eq = Equation ( lhs , rhs )
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Solutions for n = 0

lane_endem_eq_0 = lane_endem_eq . subs (n , 0)
s o l u t i o n = dsolve ( lane_endem_eq_0 , the ta ( x i ) )
s o l u t i o n = s o l u t i o n . subs ( so l ve (

[
s i m p l i f y ( x i * s o l u t i o n . rhs ) . subs ( xi , 0) ,
D e r i v a t i v e (

s i m p l i f y ( x i * s o l u t i o n . rhs ) , x i
) . do i t ( ) . subs ( xi , 0) − 1 ,

] ,
symbols ( ' C1 C2 ' ) ,

) ) . s i m p l i f y ()

θ(ξ) = 1 − ξ2
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Solutions for n = 1

lane_endem_eq_0 = lane_endem_eq . subs (n , 0)
s o l u t i o n = dsolve ( lane_endem_eq_0 , the ta ( x i ) )
s o l u t i o n = s o l u t i o n . subs ( so l ve (

[
s i m p l i f y ( x i * s o l u t i o n . rhs ) . subs ( xi , 0) ,
D e r i v a t i v e (

s i m p l i f y ( x i * s o l u t i o n . rhs ) , x i
) . do i t ( ) . subs ( xi , 0) − 1 ,

] ,
symbols ( ' C1 C2 ' ) ,

) ) . s i m p l i f y ()

θ(ξ) =
sin (ξ)

ξ

Solutions for n = 5
Although for n = 0 and n = 1, sympy solutions are straightforward, for n = 5
the process is longer. For such reason here we only present the real solutions
we obtained. To proceed we need to transform ec. 1 to its autonomous form
(ec. 3) which dependes on a parameter C [3].
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Where both dc and sc are subsidiary Jacobian elliptic functions, ρ is the
Weierstrass elliptic function, B is an integration constant and

a = 2 sin
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, b = 2 cos
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,

For C < −2 there are no real solutions.

References
[1] S. Chandrasekhar. An Introduction to the Study of Stellar Structure. Dover Publications, 2010.
[2] Aaron Meurer, Christopher P. Smith, Mateusz Paprocki, Ondřej Čertík, Sergey B. Kirpichev, Matthew
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