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1. Abstract

The propagation of bright solitons in a high power regime in a
graphene sheet is studied, where the alteration of the fraction of
flowing energy within the sheet causes the variation in the propa-
gating solitonic peaks, which when compared in relative unit allows
confirm that the latter only depend on the length of the soliton.
Finally the relation is proposed κ = ρi/ρj showing the magnitude
between solitons i j close or approaching to 2 µm and an application
to characterize width of films with non-linear susceptibility.

2. Introduction

The soliton is a type of solitary wave that can propagate in a
non-linear medium, it does not disperse so it preserves its identity
during propagation. It was described for the first time in 1834 by JS
Russell [1], as an example of a soliton that does not need a material
medium to propagate is the gravitational soliton, better known as
gravitational wave [2]. Matematically, a soliton is a solution to a wa-
ve equation with a non-linear term, such as the Korteweg-deVries
equation ( KdV) [3]. Solitons are also present in the Yang Mills
magnetic monopole theory, these solutions are stable and must be
observed in nature as material objects [4]. By imposing conditions of
interest, such as a null potential in the Nonlinear Schrodinger Equa-
tion (NLSE) [5], solutions can be obtained in a bright soliton-type
Kerr medium. This can be described as a high propagation over the
background of uniform density. In this work a study is carried out
on the bright soliton because it allows modeling the propagation of
electromagnetic waves in a graphene sheet.

3. Methodology

The complete non-linear time-dependent Schrodinger equation
is broken down by making a separation of variables to obtain the
bright soliton among its first analytical solutions. This solution re-
presents a self-focusing concentration in a space of zero density in a
non-linear medium, in [6] the computational propagation of solitons
in graphene is studied

developing an analysis on the propagation of solitons in graphe-
ne films on SiO2 and Au in a high power regime (I > 109W/cm2).
In this work, it is proposed as a contribution to make an outline
about the behavior of solitonic profiles, taking different values of
the fraction of electromagnetic energy that flows within graphene
and evaluating the effects.

The process to follow to obtain solitonic functions is described:

1. We scale the values for the soliton width a between 0,1 and
2µm with a jump of 0,01µm, obtaining a base array of 190
elements.

2. With the proportionality factor 2.64 we obtain the measure-
ments of the lateral beam ω.

3. Each coupling value is computed g for each part of the energy
fraction of I3/I1.

4. Obtaining solitonic functions.

For the fraction of flowing energy I3/1 = I3/I1 we use:
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where A(x) is a component of the vector potential A(r) and dgr is
the thickness of the 0.3 nm sheet. The family of functions f(y, z) is
of the form
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of hyperbolic secant profile, being of our interest ρ = |f(y, z)|2,
which describes the density profile of the propagating soliton in
graphene.

ρi = |fi(y, z)|2 (3)

Finally, we normalize each density.

4. Results

4.1. Coupling

The first result shows the shape of the dependence between the soli-
ton width and the coupling g for three chosen values of the fraction
of flowing energy within the graphene sheet. The values used to
obtain the results were 0.6, 0.8, and 1.0. These for the purpose of
illustrating an answer.
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gr is the third-order nonlinear susceptibility of graphene

2, 095,10−15m2/V 2

4.2. Soliton profile

To obtain the solitonic peaks, the results of the coupling we-
re used for soliton widths of 0.66, 1.33, and 2.0 µm, for a better
visualization of the behavior, it was plotted on a logarithmic scale.

4.3. Relative soliton profile

The relative soliton profiles were obtained by performing the
quotient between the soliton profiles for each 2

gω2 proper to each so-
liton length and energy fraction, obtaining similar graphs for 0.6,
0.8, and 1.0.

5. Discussions

The behavior of propagating solitons in graphene in a high po-
wer regime studied in [6] is reported as a function of soliton width
a, coupling g and the fraction of flowing energy within the graphene
film. In the first result, the coupling depends proportionally on a4.
This helps to mathematically imagine the behavior of the soliton
profiles since they depend inversely on the coupling and the lateral
beam measurement. The resulting solitonic profiles are summarized
in the following table in relation to their maximum peaks distributed
by the soliton width,

Soliton peak I3/1 Vs Width
(in log)

with the peaks of the soliton profiles, and the respective couplings,
we can predict the electric field E strengths required to generate spe-
cific solitons in a longitudinal or sublongitudinal regime with respect
to the input pulsed beam, The one used was 850 nm(0.85µm), this
limit is between 0.66 and 1.33 µm in the attached graph. In the
set of the last result, the normal profiles are illustrated in terms of
amplitude, they do not depend on the width of the soliton or the
contribution of the fraction of energy in the sheet. They are obtai-
ned from sech2(y/ω), when doing an analysis regarding the 0.6, 0.8,
and 1.0 fractions they, turn out to be identical, seen from the form
of the argument, it only depends on the quotient of the position
by the measure of the lateral beam y/ω, leaving aside arguments of
percentage of flowing energy or of specific solitonic widths that only
affect the amplitude of the wave. It can be concluded that the so-
litonic profiles in graphene acquire greater amplitude as the energy
fraction decreases due to the broadening of I3.

It is proposed that, if we want to explore an evolution from a

soliton i to a soliton j, we can start by relating its quotient |fi(y,z)|
2

|fj(y,z)|2 ,

where if the jumps are small to each other or are close to greater
than 2 µm, they are related by κ. This helps to reduce the number
of variables for the construction of a soliton neighborhood.
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(5)

One application of the results would be to use measurements of
the experimental soliton propagation of a material with non-linear
susceptibility in high power regime at a constant wavelength (for
example a laser at 850 nm). Hence the denominator of I3/1 to a
potential fixed vector becomes a constant

ε =
I3
I1

=

∫ dgr/2
−dgr/2 dx|A(x)|4∫∞
−∞ |A(x)|2

=
Φ|+dgr/2−dgr/2

constant
(6)

being Φ the integral of I3 evaluated for thickness dgr of the mate-
rial, one could find for each experimental measure the corresponding
value of dgr of the sheet taking advantage of the logarithmic scale
separation seen previously in order to be able to characterize the
thickness of the material.
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en teoŕıas de Yang Mills”, Revista de Investigación de F́ısica, Vol
14, N 1, Junio 2011
[5]NLSE, reviewed 15 of August 2020:
wiki:Nonlinear Schrodinger equation
[6]L. Nesterov, J. Bravo Abad, “Graphene supports the
propagation of subwavelength optical solitons”, Laser and Optics,
1−5, 2012.

1diego.orna@unmsm.edu.pe
2atomih@gmail.com

1


