Speaker
Description
Las ferritas (MFe2O4) son una de las familias de materiales magnéticos más estudiados tanto desde el punto de vista básico como aplicado. Las ferritas cristalizan en la estructura espinela y poseen dos sitios para los cationes, A y B. Esta característica hace que sus propiedades magnéticas de estos óxidos dependan de la distribución de cationes en las subredes de sitios A y B. El acoplamiento magnético entre los cationes es de superintercambio vía mediación con los oxígenos, dando como resultado acoplamientos A-O-A (JAA), B-O-B (JBB) y A-O-B (JAB), donde A y B representan los sitios estructurales. En los casos en que M es un metal no magnético (Zn, Ti, etc.) y los Fe ocupan sólo los sitios B (estructura normal) únicamente se presentan débiles interacciones B-O-B, lo que da lugar a bajas temperaturas de orden. Dado que los Fe forman una red tipo pirocloro con frustración geométrica más el desorden de espín en la subred de sitios B el estado fundamental es altamente degenerado, pudiendo presentarse ordenamientos magnéticos antiferromagnéticos, ferrimagnéticos o de tipo vidrio de espín a bajas temperaturas. A medida que el número de iones Fe en sitios A se incrementa se producen cambios en la interacción Fe-Fe y por ende en la respuesta magnética del sistema. En el presente trabajo, reportamos los resultados del estudio de las propiedades estructurales, magnéticas e hiperfinas de la ferrita de Mg, MgFe2O4 a partir de cálculos de primeros principios basados en la Teoría de la Funcional Densidad (DFT) y el método Full Potential - Linearized Augmented PlaneWave (FP-LAPW). Esta ferrita se reporta como invertida (sitios A ocupados por Fe y los B por Fe y Mn en igual proporción). Con el fin de determinar el estado fundamental estructural y magnético exploramos sistemas con diferentes grados de inversión catiónica, distribución de iones Mg y Fe en la subred de sitios A y B y diferentes configuraciones magnéticas.